Impact of Processing Techniques and Packaging Materials on some Functional Properties of Soybean Flour

Author(s):  
Bosede A. Orhevba ◽  
◽  
Anehi A. Dauda ◽  
Peter A. Obasa

This study investigated some functional properties of soya bean flour produced from steeping and gelatinization techniques and stored in different packaging materials. The freshly harvested soya bean seeds used for the study were cleaned and soaked for five different durations (6, 9, 12, 15, and 18 hours); cooked at five different cooking times (20, 25, 30, 35 and 40mins); packaged in five different materials (paper bag, low density polythene bag, composite bag, high density polythene bag and plastic) and stored for five different periods (20, 40, 60, 80 and 100 days). A Response Surface Methodology, Central Composite Experimental Design was used. The samples of flour were then subjected to functional analysis. All experiments were carried out in triplicates. Data obtained was analyzed using Design Expert 11.0 statistical software tool; the Analysis of Variance (ANOVA) was conducted and empirical models developed. Statistical analysis shows that the gelatinization duration, and packaging materials had significant effect (P≤0.05) on the oil absorption capacity of the flour sample at P-value of 0.044 for gelatinization duration, 0.012 for packaging material, and water absorption capacity of the flour samples was significant with effect to storage duration P= 0.001, packaging material of 0.015 p-value. Bulk density of the processed flour was not significantly affected by processing techniques, packaging materials and storage duration employed in this study. Numerical optimization conducted on the experimental factors shows best desirability constraint of 0.60 point at steeping and gelatinization duration of 13.03 minutes and 25minutes respectively.

2019 ◽  
Vol 15 (3) ◽  
pp. 228-233
Author(s):  
Prabhavathi Supriya ◽  
Kandikere R. Sridhar

Background: Utilization of wild legumes has received prime importance in the recent past to compensate the scarcity of protein-rich foods as well as to tackle the protein energy malnutrition. Ripened split beans of Canavalia maritima devoid of seed coat and testa serve as traditional nutraceutical source for the coastal dwellers of Southwest India. Objective: The present study projects proximal and functional attributes of uncooked and cooked ripened split beans of C. maritima to be used in the preparation of functional foods. Methods: Proximal properties (moisture, crude protein, total lipids, crude fibre, carbohydrates and calorific value) and functional properties (protein solubility, gelation capacity, water-absorption, oilabsorption, emulsion qualities and foam qualities) of split beans were evaluated by standard methods. Results: Cooking did not significantly changed the crude protein, total lipids, ash, carbohydrates and calorific value, while it significantly increased the crude fibre. The protein solubility, water-absorption capacity, foam capacity and foam stability were significantly higher in uncooked than cooked beans. The cooked beans were superior to uncooked beans in least gelation concentration, low oil-absorption capacity, emulsion activity and emulsion stability. Conclusion: The functional properties of split bean flours were influenced by the proximal components like crude protein, total lipids and crude fibre. The energy-rich ripened split beans of C. maritima can serve as a new potential source for production of value added functional foods owing to their rich protein, rich carbohydrates, low-lipid and potential bioactive attributes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joan Carles Puchalt ◽  
Antonio-José Sánchez-Salmerón ◽  
Eugenio Ivorra ◽  
Silvia Llopis ◽  
Roberto Martínez ◽  
...  

AbstractTraditionally Caenorhabditis elegans lifespan assays are performed by manually inspecting nematodes with a dissection microscope, which involves daily counting of live/dead worms cultured in Petri plates for 21–25 days. This manual inspection requires the screening of hundreds of worms to ensure statistical robustness, and is therefore a time-consuming approach. In recent years, various automated artificial vision systems have been reported to increase the throughput, however they usually provide less accurate results than manual assays. The main problems identified when using these vision systems are the false positives and false negatives, which occur due to culture media changes, occluded zones, dirtiness or condensation of the Petri plates. In this work, we developed and described a new C. elegans monitoring machine, SiViS, which consists of a flexible and compact platform design to analyse C. elegans cultures using the standard Petri plates seeded with E. coli. Our system uses an active vision illumination technique and different image-processing pipelines for motion detection, both previously reported, providing a fully automated image processing pipeline. In addition, this study validated both these methods and the feasibility of the SiViS machine for lifespan experiments by comparing them with manual lifespan assays. Results demonstrated that the automated system yields consistent replicates (p-value log rank test 0.699), and there are no significant differences between automated system assays and traditionally manual assays (p-value 0.637). Finally, although we have focused on the use of SiViS in longevity assays, the system configuration is flexible and can, thus, be adapted to other C. elegans studies such as toxicity, mobility and behaviour.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2588
Author(s):  
Mansuri M. Tosif ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Grażyna Zawiślak ◽  
Grzegorz Maj ◽  
...  

In recent years, scientists have focused on research to replace petroleum-based components plastics, in an eco-friendly and cost-effective manner, with plant-derived biopolymers offering suitable mechanical properties. Moreover, due to high environmental pollution, global warming, and the foreseen shortage of oil supplies, the quest for the formulation of biobased, non-toxic, biocompatible, and biodegradable polymer films is still emerging. Several biopolymers from varied natural resources such as starch, cellulose, gums, agar, milk, cereal, and legume proteins have been used as eco-friendly packaging materials for the substitute of non-biodegradable petroleum-based plastic-based packaging materials. Among all biopolymers, starch is an edible carbohydrate complex, composed of a linear polymer, amylose, and amylopectin. They have usually been considered as a favorite choice of material for food packaging applications due to their excellent forming ability, low cost, and environmental compatibility. Although the film prepared from bio-polymer materials improves the shelf life of commodities by protecting them against interior and exterior factors, suitable barrier properties are impossible to attain with single polymeric packaging material. Therefore, the properties of edible films can be modified based on the hydrophobic–hydrophilic qualities of biomolecules. Certain chemical modifications of starch have been performed; however, the chemical residues may impart toxicity in the food commodity. Therefore, in such cases, several plant-derived polymeric combinations could be used as an effective binary blend of the polymer to improve the mechanical and barrier properties of packaging film. Recently, scientists have shown their great interest in underutilized plant-derived mucilage to synthesize biodegradable packaging material with desirable properties. Mucilage has a great potential to produce a stable polymeric network that confines starch granules that delay the release of amylose, improving the mechanical property of films. Therefore, the proposed review article is emphasized on the utilization of a blend of source and plant-derived mucilage for the synthesis of biodegradable packaging film. Herein, the synthesis process, characterization, mechanical properties, functional properties, and application of starch and mucilage-based film are discussed in detail.


2014 ◽  
Vol 881-883 ◽  
pp. 766-775 ◽  
Author(s):  
Dan Wu ◽  
Wei Hong Min ◽  
Jing Sheng Liu ◽  
Li Fang ◽  
Hong Mei Li ◽  
...  

The functional properties of protein isolate and major protein fractions prepared from Changbai Mountain pine nuts were investigated. Albumin, globulin, glutelin, and protein isolates were obtained after the Osborne method and alkaline dissolution and acid precipitation, and protein contents of the fractions are 48.02%, 81.93%, 83.02%, and 89.69%, respectively. For the sulfhydryl contents, albumin is the highest, and glutelin is the lowest. In a disulphide bond, the protein isolate content is the highest with a value of 28.74 μmol/g, and the glutelin content is the lowest with the value of 13.46 μmol/g. For the four kinds of proteins, the essential amino acids in percentage of total amino acids are 31.13%, 34.22%, 30.30%, and 34.54%, respectively. The pH dependent protein solubility profile reveals that the minimum solubility is at pH 5.0, which corresponds to the isoelectric point. Protein isolate has the minimum water absorption capacity with a value of 0.59 ml/g. On the other hand, albumin has the minimum oil absorption capacity with a value of 2.11 ml/g. The emulsifying activity and stability and the foaming activity and stability increased with increasing concentration of four kinds of proteins. SDS-PAGE results showed that these four kinds of proteins have different molecules.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (11) ◽  
pp. 551-558
Author(s):  
ANTHONY V. LYONS ◽  
GREGG REED

The desire for more sustainable packaging has led to the development of new packaging materials that are fiber based. Aqueous coatings are a pathway to improve the recyclability of these materials. Pigments used in these coatings can improve the performance of the coating and reduce cost while further improving the recyclability. Mineral pigments are also considered to be compost neutral. In this paper, we provide the reader a better fundamental understanding of the mechanisms by which pigments work in barrier coatings. A pigment’s mineralogy and physical characteristics are important to how it will perform, and there have been recent pigment developments that improve coating performance. This paper shows that some pigments are better than others in particular barrier applications. Also, pigmented base or pre-coats can be used to prepare the surface for more highly functional coatings that go on top, improving the barrier function of packaging material and reducing overall cost. Finally, the converting operation is of major importance in driving formulation choices for barrier applications.


Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 145-152
Author(s):  
M. Hasmadi ◽  
M. Merlynda ◽  
A.H. Mansoor ◽  
I. Salwa ◽  
M.K. Zainol ◽  
...  

This study aimed to determine the proximate compositions and functional properties of sweet potato flour from different varieties cultivated in Sabah, Malaysia, namely Jepun, Kairot and Kaladi. The results showed that the moisture content of all flour samples was below 14%. The fat and protein content of Jepun sweet potato variety were significantly different (p<0.05) as compared with Kairot and Kaladi sweet potato varieties. The ash and dietary fibre content of Kairot sweet potato flour were higher (p<0.05) compared to Jepun and Kaladi flours. In addition, Kaladi sweet potato had the highest carbohydrate content (82%). There were significant differences (p<0.05) in the values of L*, a* and b* for all sweet potato flours. The Jepun sweet potato flour had the highest foaming capacity, water absorption capacity, oil absorption capacity, swelling power and viscosity. Rapid Visco analyser revealed that significant differences were observed for pasting parameters such as peak viscosity, trough viscosity, breakdown viscosity, final viscosity and setback viscosity. The gelatinisation properties showed that Kairot sweet potato flour had the highest onset temperature, conclusion temperature and enthalpy while Kaladi sweet potato flour had the highest peak temperature.


2021 ◽  
Vol 67 (3) ◽  
pp. 3575-3583
Author(s):  
Edina Lendvai

Packaging technology is one of today’s rapidly evolving disciplines, with innovative implications for many other disciplines, such as the food industry. Plastics can also be referred to as the materials of the 21st century, without which we could hardly imagine our lives today. Bioplastics are made from raw materials from renewable sources, while degradable plastics are mixtures of plastics made from conventional raw materials and additives that aid degradation. In my qualitative, online study, 513 people answered my questions about what the main function of packaging is, what characteristics a packaging material should possess, foods in which packaging are preferred, whether they had ever encountered environmentally friendly packaging materials. In addition to a lot of useful information, it turned out that Hungarian people are typically eco-conscious on paper, but in reality they do not pay enough attention to it. It is primarily college graduate women between the ages of 46 and 65 who also take environmental and ecological considerations into account when buying food.


Author(s):  
Monireh Rezai ◽  
Shirin Shahbazi ◽  
Nasrin Mansournia

Since the variation of microRNAs expression has been described in type2 diabetes, we aimed to evaluate the plasma levels of miR-126 with known roles in the angiogenesis. Genomic polymorphism of miR-126 (SNP rs4636297) was also assessed as it is involved in the processing of pri-miR-126 to mature microRNA.Genotyping of the SNP rs4636297 was carried out by PCR-RFLP using HaeII enzyme. Real-time PCR assay was applied to assess miR-126 expression, which the fold change in gene expression was calculated by the Relative Expression Software Tool (REST). Data analysis was performed using exact-like logistic regression, Fisher exact test and the elrm package with the R software. Our data indicated that the group with BMI greater than 30 was at greater risk of diabetes (odds ratio=14.4, p value=0.00), compared with the BMI=19-25. The mean fold decrease in miR-126 gene expression in diabetic samples relative to normal samples was 0.653 (95% confidence interval: 0.012 - 18.765). All patients with the lowest levels of miR-126, had experienced diabetic complications. Considering the AA genotype as the reference, the odds ratio of diabetic complications for the GG and AG genotype were 1.2 and 1.43, respectively. miR-126 is one of the key factors in predisposition to diabetes and diabetic complication. Since the lowest expression of miR-126 leads to the diabetic complications it can be concluded that genetic predisposing factors should be considered in the management and treatment of Type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document