scholarly journals Inhibitory effects of different hand sanitizers against the resident microflora of skin

Author(s):  
Touhida Ishma ◽  
H. M. Sayeed Uddin ◽  
Anik Paul ◽  
Farahnaaz Feroz ◽  
Mrityunjoy Acharjee

<p class="abstract"><strong>Background:</strong> Practice of hand washing is very important to eliminate the microbial contamination especially during the work in laboratories, hospital and even at home before taking food. Proper use of hand sanitizer can significantly reduce the rate of hospital acquired infection also.</p><p class="abstract"><strong>Methods:</strong> The current investigation was designated to identify different bacterial species from the upper skin of hands of the laboratory managements through conventional culture methods and the efficacy of the samples (Dettol, Purell and Savlon) against the isolated bacteria through agar well diffusion method and minimum inhibitory concentration (MIC)  </p><p class="abstract"><strong>Results:</strong> Different concentrations such as 25%, 50% and 100% of each of antimicrobial agents showed their antibacterial activity against <em>Staphylococcus </em>spp., <em>Klebsiella </em>spp., <em>E. coli</em> and <em>Pseudomonas</em> spp. those were isolated from the hand. 25% of Dettol exhibited 20 mm zone diameter against <em>Klebsiella</em>spp. Whereas 25% of Purell and Savlon unveiled 15 mm and 22 mm zone of inhibition against <em>E. coli</em> and <em>Pseudomonas</em> spp. respectively. In case of 100% sample of Dettol, Purell and Savlon, the highest zone diameter was observed as 55 mm, 50 mm and 45 mm against <em>Klebsiella </em>spp.,<em> Staphylococcus </em>spp., and <em>E. coli</em> consecutively. The MIC of Dettol sample was 8 µl against <em>Staphylococcus </em>spp., and <em>Pseudomonas</em> spp. In case of Purell, the MIC was 128 µl against <em>Staphylococcus</em> spp., <em>Klebsiella </em>spp. and <em>Pseudomonas </em>spp. were inhibited at 4 µl samples.</p><p class="abstract"><strong>Conclusions:</strong> The in-vitro antibacterial activity of the hand sanitizers was so satisfactory against the isolated bacteria. This finding would be very helpful for the laboratory management in order to minimize the rate of contamination during the research and supervision of the different experiment.</p>

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2021 ◽  
Vol 74 (9) ◽  
pp. 2109-2111
Author(s):  
Evheniia A. Shtaniuk ◽  
Oleksandra O. Vovk ◽  
Larisa V. Krasnikova ◽  
Yuliia I. Polyvianna ◽  
Tetiana I. Kovalenko

The aim: Study of antibacterial activity of the preparations, containing antiseptic dioxidine and antibiotic levofloxacin in vitro on standard strains of main optional-anaerobic pathogens of purulent-inflammatory processes of surgical wounds S. aureus, E. coli, P. aeruginosa and definition of more effective ones on them. Materials and methods: Solutions of dioxidine 1.2 %, dioxidine 1.2% with decamethaxin, Dioxisole, water soluble ointment with dioxidine 1.2% and levofloxacin 0.1% with decamethaxin were used in experiment. Antibacterial activity was studied on standard strains of S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Distinguishing and identification of pure cultures of bacteria was done according to generally accepted microbiological methods. Determination of purulent-inflammatory processes pathogens sensitivity was done by disco-diffuse method on Mueller-Hinton medium. Antibacterial activity of solutions and ointments was studied with the help of agar diffusion method (“well” method) according to methodic recommendations. Each investigation was repeated 6 times. Method of variation statistics was used for the research results analysis. Results: All antibacterial preparations under study are effective and highly effective on S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Solution with 1.2 % dioxidine with decamethaxin and ointment with 0.1 % levofloxacin and decamethaxin have larger growth retardation zones towards S. aureus and P. aeruginosa. E. coli strains are more sensitive to the solution of Dioxisole and ointment with 1.2 % dioxidine. Conclusions: All strains are sensitive, most of them are highly sensitive, up to 5 antibacterial preparations under study in vitro.


2019 ◽  
Vol 24 ◽  
pp. 2515690X1988627 ◽  
Author(s):  
Mekonnen Sisay ◽  
Negussie Bussa ◽  
Tigist Gashaw ◽  
Getnet Mengistu

Medicinal plants are targeted in the search for new antimicrobial agents. Nowadays, there is an alarmingly increasing antimicrobial resistance to available agents with a very slow development of new antimicrobials. It is, therefore, necessary to extensively search for new agents based on the traditional use of herbal medicines as potential source. The antibacterial activity of 80% methanol extracts of the leaves of Verbena officinalis (Vo-80ME), Myrtus communis (Mc-80ME), and Melilotus elegans (Me-80ME) was tested against 6 bacterial isolates using agar well diffusion technique. In each extract, 3 concentrations of 10, 20, and 40 mg/well were tested for each bacterium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were also determined. Vo-80ME and Mc-80ME exhibited promising antibacterial activity against Staphylococcus aureus with the highest zone of inhibition being 18.67 and 26.16 mm, respectively at concentration of 40 mg/well. Regarding gram-negative bacteria, Vo-80ME exhibited an appreciable activity against Escherichia coli and Salmonella typhi. Mc-80ME displayed remarkable activity against all isolates including Pseudomonas aeruginosa with the maximum zone of inhibition being 22.83 mm. Me-80ME exhibited better antibacterial activity against E coli, but its secondary metabolites had little or no activity against other gram-negative isolates. The MIC values of Vo-80ME ranged from 0.16 to 4.00 mg/mL. The lowest MIC was observed in Mc-80ME, with the value being 0.032 mg/mL. Mc-80ME had bactericidal activity against all tested bacterial isolates. Mc-80ME showed remarkable zone of inhibitions in all tested bacterial isolates. Besides, Vo-80ME showed good antibacterial activity against S aureus, E coli, and S typhi. Conversely, Me-80ME has shown good activity against E coli only. Generally, M communis L and V officinalis have good MIC and MBC results.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Naheed Zafar ◽  
Bushra Uzair ◽  
Muhammad Bilal Khan Niazi ◽  
Shamaila Sajjad ◽  
Ghufrana Samin ◽  
...  

Treatment of pandrug resistant (PDR) Escherichia coli strain is the leading causative agent of bovine mastitis worldwide. Hence, becoming a potential threat to veterinary and public health. Therefore, to control the infection new nontoxic, biocompatible antimicrobial formulation with enhanced antibacterial activity is massively required. Current study was planned to synthesize chitosan coated titanium dioxide nanoparticles (CS-NPs coated TiO2). Coating was being done by chitosan nanoparticles (CS-NPs) using ionic gelation method. Aqueous solution of Moringa concanensis leaf extract was used to synthesize titanium dioxide nanoparticles (TiO2 NPs). The synthesized nanoformulations were characterized by using XRD, SEM, and FTIR. X-ray diffraction (XRD) analysis indicated the crystalline phase of TiO2 NPs and CS-NPs coated TiO2 NPs. Scanning Electron Microscopy (SEM) confirmed spherical shaped nanoparticles size of chitosan NPs ranging from 19–25 nm and TiO2 NPs 35–50 nm. Thesize of CS-NPs coated TiO2 NPs was in the range of 65–75 nm. The UV-Vis Spectra and band gap values illustrated the red shift in CS-NPs coated TiO2 NPs. Fourier transform infrared (FTIR) spectroscopy confirmed the linkages between TiO2 NPs and chitosan biopolymer, Zeta potential confirmed the stability of CS-NPs coated TiO2 NPs by showing 95 mV peak value. In-vitro antibacterial activity of CS-NPs coated TiO2 NPs and Uncoated TiO2 NPs was evaluated by disc diffusion method against PDR strain of E. coli isolated from mastitic milk samples. The antibacterial activity of all the synthesized nanoformulations were noted and highest antibacterial activity was shown by CS-NPs coated TiO2-NPs against pandrug resistant (PDR) E. coli strain with the prominent zone of inhibition of 23 mm. Morphological changes of E. coli cells after the treatment with MIC concentration (0.78 μg/ml) of CS-NPs coated TiO2 NPs were studied by transmission electron microscopy TEM showedrigorous morphological defectand has distorted the general appearance of the E. coli cells. Cytotoxicity (HepG2 cell line) and hemolytic (human blood) studies confirmed nontoxic/biocompatible nature of CS-NPs coated biologically synthesized TiO2 NPs. The results suggested that biologically synthesized and surface modified TiO2 NPs by mucoadhesive polysaccharides (e.g. chitosan) coating would be an effective and non-toxic alternative therapeutic agent to be used in livestock industry to control drug resistant veterinary pathogens.


2018 ◽  
Vol 34 (5) ◽  
pp. 2495-2501 ◽  
Author(s):  
Sarmd D. Noori ◽  
Mazin N. Mousa ◽  
Shaker A. N. Al-Jadaan

Five compounds containing (2,4,5-triphenyl triphenyl-1H-) and azetidinone (beta-lactam) moiety were synthesized. The physical data and yield of synthesized compounds were recorded, the chemical structure of prepared compounds were characterized using FT-IR, 1H-NMR and elemental analysis. The antibacterial activity was evaluated using disc diffusion method that involve tow Gram positive (staph. aureus, E. Faecalis), two Gram negative (E. coli and ‎K. pneumoniae), and one anaerobic bacteria (streptococcus. Pyogen). Different concentration of the prepared compounds has been used, and the obtained result were compared with standard (ceftazidime). Compound (5c) showed the best antibacterial activity against all bacterial species while 5a and 5e does not. Other compounds showed activity against some species.


2021 ◽  
Vol 12 (6) ◽  
pp. 87-90
Author(s):  
Virendra Vaishnav ◽  
Debasish Sahoo ◽  
Tanushree Chatterjee

Medicinal Plants are the good source of natural antimicrobial agents. The main aim of present study was to evaluate the antibacterial activity of stem and root of Rauwolfia serpentina against six microorganism, Powdered stem and root of plant were extracted with acetone, chloroform and methanol and streptomycin used as positive control. The antibacterial activity of Rauwolfia serpentine was detected by using disc diffusion method and agar well diffusion method on the following bacteria- Bacillus cereus, Staphylococcus aureus, Bacillus fusiformis, Escherichia coli, Pseudomonas aeruginosa and P. luminescens. The experiment reported that R. serpentina Root methanol extract shown 14.86 ± 1.11 highest antibacterial activity against Pseudomonas aeruginosa through well diffusion method. Whereas root chloroform recorded 13.46 ± 1.28 highest antibacterial activity against E. coli through disc diffusion method, maximum zone of inhibition 22.66±0.52 mm was found for the positive control, streptomycin through well diffusion method. Further studies should be undertaken to reveal the correct mechanism of action of antimicrobial effect to identify the active ingredients which can be used in drug development program.


2020 ◽  
Vol 10 (5) ◽  
pp. 274-292
Author(s):  
Rohit Kumar ◽  
Sushil Kumar ◽  
Mohammad Asif Khan

Recently a series of Schiff bases of diphenylamine derivatives have been synthesized and evaluated in vitro for their antibacterial activity against pathogenic both Gram-positive bacteria B. subtitles and Gram-negative bacteria E. coli using ciprofloxacin as standard drug at conc. of 50 μg/ml and 100 μg/ml. Literature review revels that chalcones possesses various biological activities like antimicrobial, antiviral, anti-inflammatory, anticancer and sedative etc. Therefore the present study was designed on synthesis and pharmacological evaluation of 2-(4-(3 (Substituted Phenyl) Acryloyl) Phenoxy)-N, N Diphenylacetamides. Target compound was synthesized by reaction of chloroacetylchloride with diphenylamine to afford 2-chloro-N, N-diphenylacetamide which further by reaction with substituted Chalcones and characterized following recrystallization and evaluated for anti-microbial potential through cup-diffusion method. In results, the target compounds were tested for activity against B. Subtilis, E.Coli and C. albicans. The chalcones having the lipophilic 4-chloro group (RKCT2) showed the greatest antimicrobial activity (zone of inhibition 20 & 22 mm against. B. subtilis, E. Coli, C. Albicans respectively. It suggests further researchers to go through anti-microbial evaluations against a more varieties of bacteria and fungi. Keywords: Schiff bases of diphenylamine derivatives, antibacterial activity, Gram-positive bacteria, 2-(4-(3 (Substituted Phenyl) Acryloyl) Phenoxy)-N, N Diphenylacetamides


Author(s):  
Halima Benachour ◽  
Messaoud Ramdani ◽  
Takia Lograda ◽  
Pierre Chalard ◽  
Gilles Figueredo

Abstract. Benachour H, Ramdani M, Lograda T, Chalard P, Figueredo J. 2020. Chemical composition and antibacterial activities of Capparis spinosa essential oils from Algeria. Biodiversitas 21: 161-169. The essential oils of Capparis spinosa L. collected from six locations in Algeria were obtained by hydro-distillation. The chemical composition of oils was performed by GC-MS. The disc diffusion method is applied for the antibacterial activity. The extraction produced low yield (0.03%). The result of chromatographic analysis (GC/MS) leads to the identification of 33 components; palmitic acid (38.19%), nonanal-n (12.61%), cymene-2,5-dimethoxy-para (8.94%) and octacosane (5.49%) were the major components of these oils. The result of cluster analysis based on essential oils constituents showed the presence of three chemotypes,i.e., the chemotype of Nonanal-n-Cymen 2,5 dimethoxy para-Dodecanal, the chemotype of Nonanal-n-Hexadecanoic acid-tetracosane and the chemotype Tetracosane-n-pentyl furane-2-octacosane. In-vitro antimicrobial activity of caper oils against nine bacterial species showed that the oils have no activity against E. coli and have modest activities against eight other bacterial species tested; however, the desirability test shows that the oils used were not effective on the bacteria tested.


2021 ◽  
Vol 17 ◽  
pp. 711-718
Author(s):  
Zafar Iqbal ◽  
Lijuan Zhai ◽  
Yuanyu Gao ◽  
Dong Tang ◽  
Xueqin Ma ◽  
...  

The diazabicyclooctane (DBO) scaffold is the backbone of non-β-lactam-based second generation β-lactamase inhibitors. As part of our efforts, we have synthesized a series of DBO derivatives A1–23 containing amidine substituents at the C2 position of the bicyclic ring. These compounds, alone and in combination with meropenem, were tested against ten bacterial strains for their antibacterial activity in vitro. All compounds did not show antibacterial activity when tested alone (MIC >64 mg/L), however, they exhibited a moderate inhibition activity in the presence of meropenem by lowering its MIC values. The compound A12 proved most potent among the other counterparts against all bacterial species with MIC from <0.125 mg/L to 2 mg/L, and is comparable to avibactam against both E. coli strains with a MIC value of <0.125 mg/L.


2021 ◽  
Vol 6 (3) ◽  
pp. 189-195
Author(s):  
Hary Widjajanti ◽  
Christina Vivid Handayani ◽  
Elisa Nurnawati

The antibiotic resistance of phatogenic bacteria has become a serious health problem and has encouraged the search for novel and effective antimicrobial metabolites. Meanwhile, endophytic fungi have great potential as a natural source for antimicrobial agents. The endophytic fungi that live in plant tissue produces secondary metabolites which potentially act as an antibacterial compound. The isolation of fungi for antibacterial sources reduces the large amount of plant as a source of antibacterial agents. Hence, this study aims to obtain endophytic fungi isolates from Paederia foetida L. that are capable of producing secondary metabolites as antibacterial, carry out in vitro tests to verify the antibacterial properties of secondary metabolites of the Paederia foetida L. endophytic fungi, and identify the potential of Paederia foetida L. endophytic fungi in producing antibacterial compounds. The antibacterial activity was tested against Escherichia coli ATCC8739 and Staphylococcus aureus ATCC6538 while seven isolates of endophytic fungi that potentially produced antibacterial were obtained from Sembukan (P. foetida L.). The results showed that antibacterial activities of SL1, SL4 and SL6 secondary metabolites against S. aureus ATCC6538 and E. coli ATCC8739 were moderate to strong activities. Furthermore, the Minimum Inhibition Concentration (MIC) of secondary metabolites extract of SL1 against S. aureus ATCC6538 value was 250 ????g/mL while the values of MIC extract of SL4 against S. aureus ATCC6538 and E. coli ATCC8739 were 125 ????g/mL and 250 ????g/mL respectively and MIC extract of SL6 against E. coli ATCC8739 value was 125 ????g/mL. The secondary metabolites extract of SL1 isolate were alkaloid and tannin, SL4 were phenolic and alkaloid while SL6 isolate were alkaloid and terpenoid. Hence, endophytic fungi SL1 isolate was identified as Fusarium sp., SL4 as Dematophora sp., and SL6 isolate as Acremonium sp.


Sign in / Sign up

Export Citation Format

Share Document