scholarly journals Comparison of the Wear Behavior and Hardness of Vinylester Resin Reinforced by Glass Fiber and Nano ZrO2 and Fe3O4

2021 ◽  
Vol 31 (6) ◽  
pp. 325-333
Author(s):  
Jawad K. Oleiwi ◽  
Reem Alaa Mohammed

The current trend in scientific researches is to improve the performance of mechanical and physical properties of polymeric compounds, one of these methods is to add nanoparticles to polymeric composites. In this work, the wear behaviour (pin to disc) of nanocomposites composed of vinyl ester reinforced glass fibers and nanoparticles was evaluated under three different factors, such as specimen content, load applied, and distance sliding using a sliding time constant, as well as studying the hardness shore for these nanocomposites. The (hand-lay) method was used for the purpose of preparing the nanocomposites from vinyl ester filled with 10% vf. glass fiber and (0.5%, 1%, 1.5%, and 2% vf. of nano-Fe3O4 and ZrO2). The results are tabulated and analysed using Taguchi experiments (L9) (Minitab 18) for the purpose of determining which of the factors under consideration had the greatest influence on the wear behaviour. From the results, it was found that the specimens (vinyl ester-10% vf. glass fibers-2% ZrO2) and (vinyl ester-10% vf. glass fibers-2% Fe3O4) give the best wear resistance 0.003×10-5, 0.012×10-5 mm3/Nm respectively under the factors (load 20 N, sliding distance 45 cm). It was found that the specimen content is the most important factor influencing the wear behaviour, followed by the factors of the applied load and then the sliding distance. The addition of nanoparticles (0.5-2% vf. ZrO2, Fe3O4) to the vinyl ester resin improved the hardness values. Furthermore, the findings show that the addition of nanoparticles (ZrO2, Fe3O4) had a positive effect on the (wear and hardness) tests, implying that the nanoparticles improved the bonding between the base material and reinforcing material.

2009 ◽  
Vol 423 ◽  
pp. 125-130 ◽  
Author(s):  
Alvaro Mestra ◽  
Gemma Fargas ◽  
Marc Anglada ◽  
Antonio Mateo

Duplex stainless steels contain similar amounts of austenite  and ferrite α. This two-phase microstructure leads to an excellent combination of mechanical properties and corrosion resistance. However, there are few works dealing with the wear behaviour of these steels. This paper aims to determine the sliding wear mechanisms of a duplex stainless steel type 2205. In order to do it, three different sliding velocities (0.2, 0.7 and 1.2 m/s) and six sliding distances (500, 1000, 2000, 3000, 4000 and 5000 m) were selected. The results show that wear rate depends on both sliding velocity and sliding distance. The wear mechanisms detected were plowing, microcracking and microcutting (typical mechanisms of fatigue wear). These mechanisms evolve according to sliding velocity and sliding distance, highlighting a transition zone in which wear rate is reduced.


2019 ◽  
Vol 1 (1) ◽  
pp. 35
Author(s):  
Pramudya Aditama ◽  
Erwan Sugiatno ◽  
Sabdayana Sabdayana

Acrylic resin is the most commonly used denture base material. However, it has a shortage of being easily broken. One way to resolve this problem is by adding polyethylene (PE) or glass fibers. The purpose of this research is to compare the transversal strength of PE and glass fibers from denture plate acrylic resin repair material. The experiment involved 32 plates of heat cure acrylic with the dimensions of 65 mm x 10 mm x 2.5 mm. The speciments were prepared to create a 3 mm gap and 45° bevel. Subjects were divided into 2 groups, each group containing 16 plates. Group I was reinforced with PE fiber and Group II was reinforced with glass fiber. All plates were soaked in distillation water for one day at 37 °C. Plates were tested for transverse strength with universal testing machine and all data were analyzed with independent t-tes at 95% confidence level. Macro photo analysis was used to observed the bond failure on fiber and resin. The mean of transverse strength (MPa) denture plate acrylic resin repair material reinforced with PE fiber was (67.38 ± 4.31) MPa, while glass fiber was (93.61 ± 6.14) MPa. Independent t-tes showed that type of fiber had a significant effect (p<0.05). Thus, it is possible to conclude that addition of glass fibers in denture plate acrylic resin repair material increased the transverse strength and made it stronger than those added with PE fibers.


2015 ◽  
Vol 828-829 ◽  
pp. 272-278
Author(s):  
Katja Fritzsch ◽  
Anja Buchwalder ◽  
Rolf Zenker

This paper reports on investigations of the beneficial effects of electron beam alloying (EBA) and electron beam dispersion alloying (EBDA) on the wear behavior of AZ91D Mg alloy under mild wear conditions with applied normal loads of 1…10 N. The layers generated had a thickness of 1.5 mm with Al contents of 30 wt.%. For dispersion alloyed layers, TiC was added with particle sizes of 20…100 µm. At a sliding distance of 20 m, the wear rates of alloyed layers (150 HB) and dispersion alloyed layers (180 HB) were almost the same and could be reduced by half compared to the untreated AZ91D (60 HB). Due to their large size and the large spaces between them, TiC particles were pressed into the layer matrix, or were torn out and acted as additional abrasives. Therefore, at a sliding distance of 50 m, the wear rate of dispersion alloyed layers increased to the level of the base material.


2019 ◽  
Vol 56 (3) ◽  
pp. 616-620
Author(s):  
Virgil Florescu ◽  
Dorin Rus ◽  
Laurentiu Rece

The thermoplastic materials studied are biphasic. They consist of a polymer mass and a short glass fiber, the percentage being between 10 and 30%. We have shown, both analytically and graphically, the evolution of wear occurring on the steel surface in contact with glass fiber-reinforced polymers. The evolution in time of this process depends on the evolution of the friction coefficient in the process of the dry linear contact between different polymers and different types of steels. We have made a connection between the theoretical case and the experimental results. The experimental method used was the wear imprint method through which the wear depth and wear volume were determined. The wear process is complex and is accompanied by adhesion and corrosion phenomena. Any modification of the input parameters such as speed, temperature, load, quantity of glass fibers in the polymer lead at a certain one evolution of the wear behaviour of the composite material.


Author(s):  
R. Elansezhian ◽  
L. Saravanan

In this paper, influence of different nano particles such as ……….. on the wear behavior of a vinyl ester resin composites is reported. Nano silica particles, functionalized with a bi-functional coupling agent, methacyloxypropyl-trimethoxysilane (MPS) is found to improve the wear resistance as well as the tensile strength of the fabricated vinyl ester resin nano composite. The uniform particle dispersion and chemical bond between nano particle and vinyl ester resin was observed. Wear behavior of the resin with silica, zinc oxide and alumina nano particles were studied using taber abrasive wear tester. Wear test was conducted for different load conditions and distances. Experimental result showed that vinyl ester resin with nanosilica particles had significantly improved the wear resistance than alumina and zinc oxide nancomposites.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Jiayuan He ◽  
Weizhen Chen ◽  
Boshan Zhang ◽  
Jiangjiang Yu ◽  
Hang Liu

Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3074
Author(s):  
Kaveh Torkashvand ◽  
Vinod Krishna Selpol ◽  
Mohit Gupta ◽  
Shrikant Joshi

Sliding wear performance of thermal spray WC-based coatings has been widely studied. However, there is no systematic investigation on the influence of test conditions on wear behaviour of these coatings. In order to have a good understanding of the effect of test parameters on sliding wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted under varying test conditions, including different angular velocities, loads and sliding distances. Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate values experienced no major variation. No major change was observed in specific wear rate values even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and no significant change was noted in the prevailing wear mechanism, either. Results suggest that no dramatic changes in applicable wear regime occur over the window of test parameters investigated. Consequently, the findings of this study inspire confidence in utilizing test conditions within the above range to rank different WC-based coatings.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


Sign in / Sign up

Export Citation Format

Share Document