scholarly journals Strategies for Developing Oral Vaccines for Human Papillomavirus (HPV) Induced Cancer using Nanoparticle mediated Delivery System

2015 ◽  
Vol 18 (2) ◽  
pp. 220 ◽  
Author(s):  
Mohammad Nasir Uddin ◽  
Samir A. Kouzi ◽  
Muhammad Delwar Hussain

Human Papillomaviruses (HPV) are a diverse group of small non-enveloped DNA viruses. Some HPVs are classified as low-risk as they are very rarely associated with neoplasia or cancer in the general population, and cause lenient warts. Other HPVs are considered as high-risk types because they are responsible for several important human cancers, including cervical cancer, a large proportion of other anogenital cancers, and a growing number of head and neck cancers. Transmission of HPV occurs primarily by skin-to-skin contact. The risk of contracting genital HPV infection and cervical cancer is influenced by sexual activity. Currently two prophylactic HPV vaccines, Gardasil® (Merck, USA) and Cervarix® (GlaxoSmithKline, UK), are available and recommended for mass immunization of adolescents. However, these vaccines have limitations as they are expensive and require cold chain storage and trained personnel to administer them by injection. The use of nano or micro particulate vaccines could address most of these limitations as they are stable at room temperature, inexpensive to produce and distribute to resource poor regions, and can be administered orally without the need for adjuvants in the formulation. Also it is possible to increase the efficiency of these particulate vaccines by decorating the surface of the nano or micro particulates with suitable ligands for targeted delivery. Oral vaccines, which can be delivered using particulate formulations, have the added potential to stimulate mucosa-associated lymphoid tissue located in the digestive tract and the gut-associated lymphoid tissue, both of which are important for the induction of effective mucosal response against many viruses. In addition, oral vaccines provide the opportunity to reduce production and administration costs and are very patient compliant. This review elaborately discusses different strategies that can be pursued to develop a nano or micro particulate oral vaccine for HPV induced cancers and other diseases. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 714
Author(s):  
Matthias Läsche ◽  
Horst Urban ◽  
Julia Gallwas ◽  
Carsten Gründker

Cervical cancer is responsible for around 5% of all human cancers worldwide. It develops almost exclusively from an unsolved, persistent infection of the squamocolumnar transformation zone between the endo- and ecto-cervix with various high-risk (HR) human papillomaviruses (HPVs). The decisive turning point on the way to persistent HPV infection and malignant transformation is an immune system weakened by pathobionts and oxidative stress and an injury to the cervical mucosa, often caused by sexual activities. Through these injury and healing processes, HPV viruses, hijacking activated keratinocytes, move into the basal layers of the cervical epithelium and then continue their development towards the distal prickle cell layer (Stratum spinosum). The microbial microenvironment of the cervical tissue determines the tissue homeostasis and the integrity of the protective mucous layer through the maintenance of a healthy immune and metabolic signalling. Pathological microorganisms and the resulting dysbiosis disturb this signalling. Thus, pathological inflammatory reactions occur, which manifest the HPV infection. About 90% of all women contract an HPV infection in the course of their lives. In about 10% of cases, the virus persists and cervical intra-epithelial neoplasia (CIN) develops. Approximately 1% of women with a high-risk HPV infection incur a cervical carcinoma after 10 to 20 years. In this non-systematic review article, we summarise how the sexually and microbial mediated pathogenesis of the cervix proceeds through aberrant immune and metabolism signalling via CIN to cervical carcinoma. We show how both the virus and the cancer benefit from the same changes in the immune and metabolic environment.


2019 ◽  
Author(s):  
Noorossadat Seyyedi ◽  
Fatemeh Farjadian ◽  
Ali Farhadi ◽  
Gholamreza Rafiei Dehbidi ◽  
Reza Ranjbaran ◽  
...  

Gold nanoparticles (AuNPs) are commonly used in biosensors of various kinds. The purification of DNA from cancer tissues is an important step in diagnostic and therapeutic development, but current methods are not optimal. Many cervical cancer patients are also susceptible to high-risk human papillomavirus (HR-HPV) infection. Accurate viral diagnosis has so far relied on the extraction of adequate amounts of DNA from formalin-fixed, paraffin-embedded (FFPE) tissue samples. Since the sensitivity and specificity of commercially available purification kits are not optimal, we designed a DNA purification method based on AuNPs to purify sufficient amounts of HR-HPV DNA from cervical cancer tissue samples. AuNPs were coated with a series of oligonucleotide probes to hybridize to specific DNA sequences of HR-HPV genotypes. With this method, we recovered 733 out of 800 copies of type-specific HPV DNA with complete specificity, compared to 36 copies with a standard commercial kit (Qiagen FFPE).


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yinghui Wang ◽  
Yihang Xie ◽  
Boxuan Sun ◽  
Yuwei Guo ◽  
Ling Song ◽  
...  

Abstract Background Cervical cancers are closely associated with persistent high-risk human papillomaviruses (HR HPV) infection. The main mechanism involves the targeting of tumor suppressors, such as p53 and pRB, for degradation by HR HPV-encoded oncoproteins, thereby leading to tumorigenesis. Rap1GAP, a tumor suppressor gene, is down-regulated in many cancers. Previous studies have revealed that down-regulation of Rap1GAP is correlated with HPV16/18 infection in cervical cancer. However, the molecular mechanism remains unclear. In this study, we aimed to address the degradation pathway of Rap1GAP in HPV-positive cervical cancer cells. Methods HPV-positive (HeLa and SiHa) and negative (C33A) cervical cancer cells were used to analyze the pathways of Rap1GAP degradation. MG132 (carbobenzoxy-leucyl-leucyl-leucine) was used to inhibit protein degradation by proteasome. Co-immunoprecipitation (co-IP) was used to detect the interaction between Rap1GAP and E6AP. siRNA for E6AP was used to silence the expression of E6AP. Rapamycin was used to induce cell autophagy. Western blotting was used to check the levels of proteins. Results Following treatment with MG132, the levels of Rap1GAP were increased in the HR HPV-positive HeLa and SiHa cells, but not in the HPV-negative C33A cells. Co-immunoprecipitation assay revealed ubiquitinated Rap1GAP protein in HeLa and SiHa cells, but not in C33A cells. E6-associated protein (E6AP) mediated the ubiquitination of Rap1GAP by binding to it in HeLa and SiHa cells, but not in C33A cells. However, the levels of Rap1GAP were decreased in HeLa and SiHa cells after knocking down E6AP by siRNA. Silencing of E6AP did not affect the levels of Rap1GAP in C33A cells. Autophagy marker p62 was decreased and LC3 II/LC3 I was increased after knocking down E6AP in HeLa cells, but not in C33A cells. The levels of Rap1GAP were decreased after treating the cells with rapamycin to induce cell autophagy in HeLa and C33A cells. Conclusion Rap1GAP may be degraded by autophagy in cervical cancer cells, but HPV infection can switch the degradation pathway from autophagy to E6AP-mediated ubiquitin-proteasome degradation. E6AP may be a key component of the switch.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fan Yang ◽  
Filipe C. Mariz ◽  
Xueer Zhao ◽  
Gloria Spagnoli ◽  
Simone Ottonello ◽  
...  

Cervical cancer remains a global health burden despite the introduction of highly effective vaccines for the prophylaxis of causative human papillomavirus infection (HPV). Current efforts to eradicate cervical cancer focus on the development of broadly protective, cost-effective approaches. HPV minor capsid protein L2 is being recognized as a promising alternative to the major capsid protein L1 because of its ability to induce responses against a wider range of different HPV types. However, a major limitation of L2 as a source of cross-neutralizing epitopes is its lower immunogenicity compared to L1 when assembled into VLPs. Various approaches have been proposed to overcome this limitation, we developed and tested ferritin-based bio-nanoparticles displaying tandemly repeated L2 epitopes from eight different HPV types grafted onto the surface of Pyrococcus furiosus thioredoxin (Pf Trx). Genetic fusion of the Pf Trx-L2(8x) module to P. furiosus ferritin (Pf Fe) did not interfere with ferritin self-assembly into an octahedral structure composed by 24 protomers. In guinea pigs and mice, the ferritin super-scaffolded, L2 antigen induced a broadly neutralizing antibody response covering 14 oncogenic and two non-oncogenic HPV types. Immune-responsiveness lasted for at least one year and the resulting antibodies also conferred protection in a cervico-vaginal mouse model of HPV infection. Given the broad organism distribution of thioredoxin and ferritin, we also verified the lack of cross-reactivity of the antibodies elicited against the scaffolds with human thioredoxin or ferritin. Altogether, the results of this study point to P. furiosus ferritin nanoparticles as a robust platform for the construction of peptide-epitope-based HPV vaccines.


2003 ◽  
Vol 45 (3) ◽  
pp. 131-135 ◽  
Author(s):  
Jorge Cervantes ◽  
Carolina Lema ◽  
Luisa Hurtado ◽  
Ronald Andrade ◽  
Gladys Quiroga ◽  
...  

Cervical cancer constitutes a major health problem in developing countries like Bolivia. The roles of certain genotypes of human papillomaviruses (HPVs) in the pathogenesis of cervical cancer is well established. The prevalence of HPV infection among sexually active women varies greatly. Information regarding HPV infection in Bolivia is very much scarce, specially in regions like the Amazonian lowland. We studied 135 healthy women living in four rural localities of the Bolivian Amazon. Presence of HPV in DNA extracted from cervical swabs was analyzed using a reverse line hybridization assay. The estimated overall HPV infection prevalence among the studied rural localities was 5.9% (ranging from 0-16.6%). These values were unexpectedly low considering Bolivia has a high incidence of cervical cancer. The fact that Amazonian people seem to be less exposed to HPV, makes it likely that some other risk factors including host lifestyle behaviors and genetic background may be involved in the development of cervical cancer in this population.


2007 ◽  
Vol 23 (4) ◽  
pp. 213-227 ◽  
Author(s):  
F. Xavier Bosch ◽  
Silvia de Sanjosé

Cervical cancer has been recognized as a rare outcome of a common Sexually Transmitted Infection (STI). The etiologic association is restricted to a limited number of viral types of the family of the Human Papillomaviruses (HPVs). The association is causal in nature and under optimal testing systems, HPV DNA can be identified in all specimens of invasive cervical cancer. As a consequence, it has been claimed that HPV infection is a necessary cause of cervical cancer. The evidence is consistent worldwide and implies both the Squamous Cell Carcinomas (SCC), the adenocarcinomas and the vast majority (i.e. > 95%) of the immediate precursors, namely High Grade Squamous Intraepithelial Lesions (HSIL)/Cervical Intraepithelial Neoplasia 3 (CIN3)/Carcinomain situ. Co-factors that modify the risk among HPV DNA positive women include the use of oral contraceptives (OC) for five or more years, smoking, high parity (five or more full term pregnancies) and previous exposure to other sexually transmitted diseases such as Chlamydia Trachomatis (CT) and Herpes Simplex Virus type 2 (HSV-2). Women exposed to the Human Immunodeficiency Virus (HIV) are at high risk for HPV infection, HPV DNA persistency and progression of HPV lesions to cervical cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Juan Ramón Padilla-Mendoza ◽  
Lucía Angélica Gómez-López ◽  
Mavil López-Casamichana ◽  
Elisa Irene Azuara-Liceaga ◽  
Enoc Mariano Cortés-Malagón ◽  
...  

According to their oncogenic properties, Human Papillomaviruses (HPVs) are classified into two types: Low-Risk (LR-HPVs) and High-Risk Human Papillomaviruses (HR-HPVs). The immune system naturally controls the majority of HPV infections; however, when the HR-HPV infection is persistent, the risk of developing cervical cancer increases. Previous studies indicate that multiple-infection or coinfection with HR-HPV occurs frequently and can potentiate the development of cervical lesions. This study aimed to establish the HPV coinfection rate in squamous intraepithelial lesions from Mexican patients. For HPV detection, we performed PCR on 55 cervical lesions diagnosed by colposcopy. We detected the presence of HPV infection in 87.27% (48/55) of the lesions; interestingly, HPV coinfection was observed in 70.83% (34/48) of these samples. We also evaluated HPV infection in adjacent areas without morphological changes from 25 samples. The results showed that 80% (20/25) of these were HPV-positive and, curiously, all presented HPV-16 infection. In conclusion, our results revealed a high prevalence of HPV coinfection in cervical lesions in Mexican patients, and these results contribute to future research focused on the role that HPV coinfection plays in the development of cervical cancer.


Author(s):  
NF Brusnigina ◽  
MA Makhova ◽  
OM Chernevskaya ◽  
KA Orlova ◽  
EA Kolesnikova ◽  
...  

The purpose of the study was to assess detection rates of human papillomavirus in cervical cancer cases of Nizhny Novgorod. Materials and methods. We used the real-time polymerase chain reaction (PCR) to test samples of mucosa lining of the cervical canal and/or transformation zone taken from 630 women with cervical dysplasia of different degrees and 107 incident cases of cervical cancer that did not undergo treatment. The detection and differentiation of 14 genotypes of high-risk human papillomaviruses (HPV) was carried out using the AmpliSens® HPV HCR-genotype-FRT PRC kit. Results. The overall infection rate of women with oncogenic human papillomaviruses was 41.8%. Among the genotypes, HPV 16 (39.2%), 18 (15.5%), 33 (16.6%), and 56 (11.9%) predominated. A high prevalence of oncogenic HPV was detected in the women with cervical intraepithelial neoplasia (58.1%) and cervical cancer (90%). The spectrum of genotypes in women with neoplasia of various degrees differed. In women with CIN II and CIN III, vaccine-preventable HPV genotypes (HPV 16 and 18) playing the leading role in the development of cervical cancer were the most frequent. The same genotypes dominated in the women with invasive cervical cancer. One oncogenic HPV genotype was usually found in the infected women (69%). The high-risk HPV infection was often combined with Ureaplasma ssp (49.3%), Mycoplasma hominis (20.1%), Cytomegalovirus (21.1%), and Herpes simplex I/II (18.2%) infections. Combinations of high-risk HPV with Chlamydia trachomatis and Herpes 6 were found in 8.3% and 5% of the cases, respectively. Conclusions. Our findings proved a wide prevalence of high carcinogenic risk HPV 16 and 18 genotypes, thus indicating the expediency of using Cervarix and Gardasil vaccines registered in the Russian Federation and containing antigens to these types of virus for specific prevention of the HPV infection.


2005 ◽  
Vol 16 (2) ◽  
pp. 83-91 ◽  
Author(s):  
François Coutlee ◽  
Danielle Rouleau ◽  
Alex Ferenczy ◽  
Eduardo Franco

Human papillomaviruses (HPVs) are the etiological agents of several genital cancers, including cancer of the uterine cervix. The detection of HPV infection in genital samples may increase the sensitivity of primary and secondary screenings of cervical cancer. HPV testing may also improve the specificity of screening programs, resulting in the avoidance of overtreatment and cost savings for confirmatory procedures. The major determinants of clinical progression of HPV infection include persistence of HPV infection, involvement of high-risk HPV types, high HPV viral load, integration of viral DNA and presence of several potential cofactors. Signal amplification HPV-DNA detection techniques (Hybrid Capture II, Digene Corporation, USA) are standardized, commercially available, and capable of detecting several high-risk HPV types. They also increase the sensitivity of screening for high-grade lesions in combination with cytology. The sensitivity of these techniques to detect high-grade lesions is higher than that of cytology, but the referral rate for colposcopy is greater. These techniques are approved for the triage to colposcopy of women with cervical smears interpreted as atypical squamous cells of undetermined significance. Triage and screening for cervical cancer using HPV will probably be restricted to women aged 30 years or older because of the high prevalence of infection in younger women. Amplification techniques are ideal for epidemiological studies because they minimize the misclassification of HPV infection status. These techniques can detect low HPV burden infections. Consensus primers amplify most genital types in one reaction, and the reverse hybridization of amplicons with type-specific probes allows for the typing of HPV-positive samples. Consensus PCR assays are currently under evaluation for diagnostic purposes. HPV testing is currently implemented for the clinical management of women.


2006 ◽  
Vol 16 (3) ◽  
pp. 1269-1277
Author(s):  
C. Lema ◽  
A. L. Fuessel-Haws ◽  
L. R. Lewis ◽  
P. L. Rady ◽  
P. Lee ◽  
...  

Host genetic background seems to play a key role in cervical carcinogenesis as only a small subset of women infected with high-risk human papillomaviruses (HPVs) develop cervical cancer. The rate of cervical cancer in Vietnamese women is notably high. To explore the association of human leukocyte antigen (HLA)-DQB1 alleles, HPV infection, and cervical dysplasia in this population, cervical smears were obtained from 101 women attending the obstetrics and gynecology clinic of Da Nang General Hospital in Vietnam. Besides the Papanicolaou test, HPV and HLA-DQB1 genotyping were performed using cervical smear DNA. Additionally, a subset of 30 blood samples was used as the gold standard for HLA genotyping. HLA-DQB1 alleles showed no association with HPV infection status. However, a positive association with cervical dysplasia was found for HLA-DQB1*0302 (P = 0.0229, relative risk (RR) = 4.737) and HLA-DQB1*0601 (P = 0.0370, RR = 4.038), whereas HLA-DQB1*0301 (P = 0.0152, RR = 0.221) was found negatively associated. The low diversity of HLA-DQB1 alleles, wide spectrum of HPV genotypes, and high prevalence of HPV 16 and HPV 18 observed in the study population suggest a permissive/susceptible genetic background that deserves further research. Total concordance of HLA-DQB1 genotyping results between blood and cervical cells confirms the potential value of cervical smears as an effective tool for the development of cervical cancer biomarkers.


Sign in / Sign up

Export Citation Format

Share Document