scholarly journals Co-delivery of Doxorubicin and PSC 833 (Valspodar) by Stealth Nanoliposomes for Efficient Overcoming of Multidrug Resistance

2012 ◽  
Vol 15 (4) ◽  
pp. 568 ◽  
Author(s):  
Elmira Bajelan ◽  
Azadeh Haeri ◽  
Amir Masoud Vali ◽  
Seyed Nasser Ostad ◽  
Simin Dadashzadeh

Purpose. This study was aimed at developing co-encapsulated stealth nanoliposomes containing PSC 833, an efficient MDR modulator, and doxorubicin (DOX) in order to increase the effectiveness and decrease adverse effects of the anticancer drug. Methods. In attempt to increase the encapsulation efficiency of drugs, different methods for liposome preparation were tested and the effect of different parameters such as drug to lipid molar ratio, cholesterol mole percent and lipid compositions, were investigated. The final product with a lipid composition of EPC:DSPE-PEG2000:Chol (60:5:30 %mol) was prepared by thin layer film hydration method. After preparation of empty liposomes, DOX and PSC 833 were loaded using ammonium sulfate gradient and remote film loading methods, respectively. Physical characteristics of optimized liposomes (DOX/PSC-L) such as particle size, zeta potential, encapsulation efficiency, in-vitro drugs release and stability were evaluated. Furthermore, in vitro cytotoxicity study of various liposomal formulations as well as drugs, solutions against resistant human breast cancer cell line, T47D/TAMR-6, was evaluated using MTT assay. Results. The best formulation showed a narrow size distribution with average diameter of 91.3 ± 0.2 nm with zeta potential of -6 ± 1.2, the encapsulation efficiency for DOX and PSC 833 were more than 95% and 65.5%, respectively. In DOX-resistant T47D/TAMR-6 cells, dual-agent stealth liposomes showed significantly greater cytotoxicity (P < 0.05) than free DOX and liposomal DOX plus free PSC 833 treatments. Conclusions. Co-encapsulation of DOX and PSC 833 presents a promising anticancer formulation, capable of effective reversal of drug resistance, and should be explored further in therapeutic studies with animal tumor xenograft models. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.

2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


RSC Advances ◽  
2016 ◽  
Vol 6 (53) ◽  
pp. 47520-47529 ◽  
Author(s):  
Mohammad H. Sakr ◽  
Najeeb M. Halabi ◽  
Leen N. Kalash ◽  
Sara I. Al-Ghadban ◽  
Mayyasa K. Rammah ◽  
...  

We demonstrate the effective cytotoxic properties of a dye-sensitized metal oxide in an in vitro model of a human lung cancer cell line (A549 cells) upon light irradiation, where a type I mechanism photo-dynamic therapy is realized exclusively.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 978 ◽  
Author(s):  
Ji-Hun Jang ◽  
Seung-Hyun Jeong ◽  
Yong-Bok Lee

Methotrexate, which is widely used in the treatment of cancer and immune-related diseases, has limitations in use because of its low bioavailability, short half-life, and tissue toxicity. Thus, in this study, a nano-sized water-in-oil-in-water (W/O/W) double emulsion containing methotrexate was prepared to enhance its lymphatic delivery and bioavailability. Based on the results from solubility testing and a pseudo-ternary diagram study, olive oil as the oil, Labrasol as a surfactant, and ethanol as a co-surfactant, were selected as the optimal components for the nanoemulsion. The prepared nanoemulsion was evaluated for size, zeta potential, encapsulation efficiency, pH, morphology, and in vitro release profiles. Furthermore, pharmacokinetics and lymphatic targeting efficiency were assessed after oral and intravenous administration of methotrexate-loaded nanoemulsion to rats. Mean droplet size, zeta potential, encapsulation efficiency, and pH of formulated nanoemulsion were 173.77 ± 5.76 nm, −35.63 ± 0.78 mV, 90.37 ± 0.96%, and 4.07 ± 0.03, respectively. In vitro release profile of the formulation indicated a higher dissolution and faster rate of methotrexate than that of free drug. The prepared nanoemulsion showed significant increases in maximum plasma concentration, area under the plasma concentration-time curve, half-life, oral bioavailability, and lymphatic targeting efficiency in both oral and intravenous administration. Therefore, our research proposes a methotrexate-loaded nanoemulsion as a good candidate for enhancing targeted lymphatic delivery of methotrexate.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5733
Author(s):  
Esrat Jahan Rupa ◽  
Jin Feng Li ◽  
Muhammad Huzaifa Arif ◽  
Han Yaxi ◽  
Aditi Mitra Puja ◽  
...  

This study aimed to produce and optimize a Cordyceps militaris-based oil-in-water (O/W) nanoemulsion (NE) encapsulated in sea buckthorn oil (SBT) using an ultrasonication process. Herein, a nonionic surfactant (Tween 80) and chitosan cosurfactant were used as emulsifying agents. The Cordyceps nanoemulsion (COR-NE) was characterized using Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field-emission transmission electron microscope (FE-TEM). The DLS analyses revealed that the NE droplets were 87.0 ± 2.1 nm in diameter, with a PDI value of 0.089 ± 0.023, and zeta potential of −26.20 ± 2. The small size, low PDI, and stable zeta potential highlighted the excellent stability of the NE. The NE was tested for stability under different temperature (4 °C, 25 °C, and 60 °C) and storage conditions for 3 months where 4 °C did not affect the stability. Finally, in vitro cytotoxicity and anti-inflammatory activity were assessed. The results suggested that the NE was not toxic to RAW 264.7 or HaCaT (human keratinocyte) cell lines at up to 100 µL/mL. Anti-inflammatory activity in liposaccharides (LPS)-induced RAW 264.7 cells was evident at 50 µg/mL and showed inhibition of NO production and downregulation of pro-inflammatory gene expression. Further, the NE exhibited good antioxidant (2.96 ± 0.10 mg/mL) activity and inhibited E. coli and S. aureus bacterial growth. Overall, the COR-NE had greater efficacy than the free extract and added significant value for future biomedical and cosmetics applications.


2017 ◽  
Vol 32 (5) ◽  
pp. 612-621 ◽  
Author(s):  
Zhiwen Zeng ◽  
Xiumei Mo

In this paper, a novel chitosan derivative, thiol-grafting bio-inspired catechol-conjugated chitosan was synthesized. The chemical structure of the synthesized catechol-conjugated chitosan was verified by 1H NMR, and its contents of thiol group and catechol group were determined by UV-vis spectrum. Four percent of catechol-conjugated chitosan aqueous solution could form hydrogels rapidly in situ in 1 min or less with the addition of sodium periodate. Rheological studies showed that the mechanical properties depend on the concentrations of catechol-conjugated chitosan and the molar ratio of sodium periodate to catechol groups. Additionally, the adhesive properties of the resulting adhesives were evaluated, and the adhesion strength of obtained adhesives was as high as 50 kPa because of the complex and multiple interactions, especially the anti-oxidation mechanism of thiol group. The in vitro cytotoxicity assays demonstrated an excellent biocompatibility of the catechol-conjugated chitosan hydrogels. Benefiting from the in situ fast cured, desired mechanical strength, biocompatibility and relatively high adhesion performance, these properties suggested that catechol-conjugated chitosan hydrogel adhesives have potential applications as tissue adhesive for soft tissues.


2006 ◽  
Vol 6 (9) ◽  
pp. 2936-2944 ◽  
Author(s):  
Ai-Ping Zheng ◽  
Jian-Cheng Wang ◽  
Wan-Liang Lu ◽  
Xuan Zhang ◽  
Hua Zhang ◽  
...  

Thymopentin, a potent immunomodulating drug, was incorporated into pH-sensitive chitosan nanoparticles prepared by ionic gelation of chitosan with tripolyphosphate anions and then coated with Eudragit S100 to improve the stability and the oral bioavailability. Nanoparticles particle size and zeta potential were measured by photo correction spectroscopy and laser Dopper anemometry. Its morphology was examined by environment scan electron microscope. The encapsulation efficiency and the release in vitro were determined by HPLC. Enzymatic stabilization was expressed by the enzymatic degradation of aminopeptidase. Biological activity of TP5 loaded in nanoparticles was assayed by lymphocyte proliferation test in vitro and the immune function (CD4+/CD8+) of irradiated rat in vivo. The results obtained demonstrated that the average sizes of pH-sensitive chitosan nanoparticles were 175.6 ± 17 nm, the zeta potential was 28.44 ± 0.5 mV and the encapsulation efficiency was 76.70 ± 2.6%. The cumulative release percentages of thymopentin from the pH-sensitive nanoparticles were 24.65%, 41.01%, and 81.44% incubated in different medium, 0.1 N HCl, pH 5.0 PBS, and pH 7.4 PBS, respectively. The pH-sensitive chitosan nanoparticles could efficiently protect TP5 from enzymatic degradation and prolong the degradation half-time of TP5 from 1.5 min to 15 min. It was demonstrated from the lymphocyte proliferation test that the nanoparticle-encapsulated TP5 still kept its biological activity. In immunosuppression rats, the lowered T-lymphocyte subsets values were significantly increased and the raised CD4+/CD8+ ratio was evidently reduced. These results indicated that pH-sensitive chitosan nanoparticles may be used as the vector in oral drug delivery system for TP5.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 425-437
Author(s):  
Khushboo Verma ◽  
Jhakeshwar Prasad ◽  
Suman Saha ◽  
Surabhi Sahu

The aim of this work was to develop and evaluate curcumin loaded liposome and its bio- enhancement. Curcumin was selected as a natural drug for liposome formulation. Curcumin show variety of biological activity but it also shows poor bioavailability due to low aqueous solubility (1 µg/ml), poor absorption and rapid metabolism so that piperine was selected as bio enhancer to improve curcumin bioavailability. Soy lecithin and cholesterol were used to prepared curcumin and curcumin-piperine loaded liposome at different ratio by thin film hydration method because of easy to perform, and high encapsulation rates of lipid. The all liposome formulations (F1-F5) were evaluated by mean particle size, polydispersity index, zeta potential, encapsulation efficiency and drug release. Bioavailability was also determined on rat. Blood samples were collected at specific intervals, and plasma was separated by ultracentrifugation. Plasma was analyzed by high-performance liquid chromatography at 425 nm taking acetonitrile: water (75:25 v/v) acidified with 2% acetic acid as a mobile phase at a flow rate of 0.5 ml/min using C18 column. The mean particle size was found in the range between 800-1100 that indicate liposome are large unilamellar vesical types. By zeta potential study its conform that the all formulation was stable. The encapsulation efficiency of all liposome formulation are varied between 59-67%. In vitro drug release was analyse in 7.4 pH phosphate buffer, the maximum %CDR observed at the 12 hrs., and formulation are follow sustained release thus they reduce metabolism, good absorption rate which improve bioavailability of drug. From in-vivo study, it is clear that curcumin-piperine liposomal formulation, increases Cmax, area under the curve, and mean residence time significantly as compared to pure curcumin and pure curcumin liposome. Keywords: liposome; Curcumin; Piperine, Thin film hydration method; Bioavailability


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Quang Trung Nguyen ◽  
Phuong Nam Pham Thi ◽  
Nguyen Van Tuyen

Six Fe(III) complexes bearing unsymmetrical salen-type ligands derived from 2-hydroxynaphthaldehyde and substituted salicylaldehydes were synthesized by coordinating the unsymmetrical salen-type ligands with FeCl3.6H2O. The synthetic complexes were characterized by electrospray ionization mass spectra (ESI-MS), effective magnetic moments (μeff), and infrared (IR) and ultraviolet-visible (UV-Vis) spectra. The spectroscopic data are in good agreement with the suggested molecular formulae of the complexes. Their cyclic voltammetric studies in acetonitrile solutions showed that the Fe(III)/Fe(II) reduction processes are electrochemically irreversible. The in vitro cytotoxicity of the obtained complexes was screened on human cancer cell lines KB (a subline of Hela tumor cell line) and HepG2 (a human liver cancer cell line) and a normal human cell line HEK-293 (Human Embryonic Kidney cell line). The results showed that the synthetic Fe(III) complexes are highly cytotoxic and quite selective. The synthetic complexes bearing unsymmetrical salen-type ligands with different substituted groups in the salicyl ring indicate different cytotoxicity.


2018 ◽  
Vol 34 (5) ◽  
pp. 2268-2272
Author(s):  
Maurin Marcelia ◽  
Ade Arsianti ◽  
Jilly Octaria Tagore Chan ◽  
Stevano Julio Wijoyo ◽  
Fadilah Fadilah ◽  
...  

Gallic acid is a phenolic compound distributed in plants and fruits which has been reported to have cytotoxic effect on MCF-7 breast cancer cell line. In this research, we investigated in vitro cytotoxic effect of six synthesized compounds of gallic acid derivatives (N-alkyl gallamide), namely N-methyl gallamide (2); N-ethyl gallamide (3); N-butyl gallamide (4); N-sec-butyl gallamide (5); N-tert-butyl gallamide (6) and N-hexyl gallamide (7) against breast MCF-7 cells by MTT assay. Linear regression analysis is utilized to analyze data to regenerate IC50 value. The results will be compared with gallic acid as an original compound and doxorubicin as a positive control.Among six synthesized compounds, N-tert-butyl gallamide (6) with IC50 value of 2.1 µg/mL, and N-hexyl gallamide (7) with IC50 value of 3.5µg/mL,showed the stronger cytotoxicity against breast MCF-7 cells compared to gallic acid and doxorubicin. Thus,N-tert-butyl gallamide (6) and N-hexyl gallamide (7) are potential to be further developed as a promising anti-breast cancer agents.


Sign in / Sign up

Export Citation Format

Share Document