scholarly journals Immunomodulatory Effects of Calcitriol through DNA Methylation Alteration of FOXP3 in the CD4+ T Cells of Mice

Author(s):  
Mona Oraei ◽  
Sama Bitarafan ◽  
Seyed Alireza Mesbah-Namin ◽  
Ali Noori-Zadeh ◽  
Fatemeh Mansouri ◽  
...  

Vitamin D plays a variety of physiological functions, such as regulating mineral homeostasis. More recently, it has emerged as an immunomodulator player, affecting several types of immune cells, such as regulatory T (Treg) cells. It has been reported that vitamin D exerts some mediatory effects through an epigenetic mechanism. In this study, the impacts of calcitriol, the active form of vitamin D, on the methylation of the conserved non-coding sequence 2 (CNS2) region of the forkhead box P3 (FOXP3) gene promoter, were evaluated. Fourteen C57BL/6 mice were recruited in this study and divided into two intervention and control groups. The CD4+ T cells were isolated from mice splenocytes. The expression of FOXP3, IL-10, and transforming growth factor-beta (TGF-β1) genes were relatively quantified by real-time PCR technique, and the DNA methylation percentage of every CpG site in the CNS2 region was measured individually by bisulfite-sequencing PCR. Vitamin D Intervention could significantly (p<0.05) increase the expression of FOXP3, IL-10, and TGF-β1 genes in the CD4+ T cells of mice comparing with the control group. Meanwhile, methylation of the CNS2 region of FOXP3 promoter was significantly decreased in three of ten CpG sites in the vitamin D group compared to the control group. The results of this study showed that vitamin D can engage the methylation process to induce FOXP3 gene expression and probably Treg cytokines profile. Further researches are needed to discover the precise epigenetic mechanisms by which vitamin D modulates the immune system.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Song Sun ◽  
Menghua Xu ◽  
Peijun Zhuang ◽  
Gong Chen ◽  
Kuiran Dong ◽  
...  

AbstractTo investigate the mechanism of 25 hydroxyvitamin D (25(OH)D) deficiency in children with biliary atresia (BA) and its effect on liver fibrosis. The serum vitamin D and 25(OH)D, and expression of 25 hydroxylase (CYP2R1 and CYP27A1) in the liver of BA patients were detected and compared with those in the control group. We investigated the effect of differential expression of CYP2R1 in hepatocytes on the expression of genes related to liver fibrosis in primary hepatic stellate cells (HSCs) of BA and animal models of cholestasis. The ratio of 25(OH)D/vitamin D in the BA group was significantly lower than that in the control group. The mRNA and protein expression of CYP2R1 and CYP27A1 in liver tissue of the BA group was significantly lower than that in the control group. Exogenous active vitamin D (calcitriol) inhibited the proliferation and migration of primary HSCs isolated from BA patients, and reduced the expression of fibrosis-related genes in vitro. Downregulation of expression of CYP2R1 in hepatocytes increased expression of transforming growth factor (TGF)-β1, collagen (Col)-1α1 and tissue inhibitor of metalloproteinase (TIMP)-1, and decreased the expression of matrix metalloproteinase (MMP)-2 in cocultured primary HSCs of BA. Upregulation of expression of CYP2R1 in mice with bile duct ligation significantly increased the level of 25(OH)D, decreased the expression of TGF-β1, Col-1α1 and TIMP-1, and increased the expression of MMP-2. Children with BA have impaired vitamin D activation due to CYP2R1 deficiency. The dysactivation of vitamin D can promote the proliferation and activation of HSCs and participate in the development of hepatic fibrosis in BA.


Blood ◽  
2002 ◽  
Vol 100 (7) ◽  
pp. 2562-2571 ◽  
Author(s):  
Sergio Rutella ◽  
Luca Pierelli ◽  
Giuseppina Bonanno ◽  
Simona Sica ◽  
Franco Ameglio ◽  
...  

Granulocyte colony–stimulating factor (G-CSF) may affect T-cell homeostasis by multiple mechanisms, inducing polarization of cytokine secretion, inhibition of T-cell proliferation, and enhancement of T-cell apoptosis. We analyzed the production of interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1) by T cells from healthy volunteer donors treated with recombinant human G-CSF. Highly purified CD4+ T cells obtained before and after G-CSF administration (pre-G and post-G, respectively) were activated using the allogeneic mixed leukocyte reaction. Post-G CD4+T cells produced high levels of IL-10 but undetectable levels of IL-2 and IL-4, whereas the level of TGF-β1 release was comparable to that of pre-G CD4+ T cells. Notably, post-G CD4+ T cells proliferated poorly in response to alloantigens and to recall antigens and suppressed the proliferation of autologous CD4+ T cells in a cell contact–independent and an antigen-nonspecific manner. TGF-β1 and IL-10 were not dispensable for post-G CD4+ T cells to mediate suppression, as shown by neutralization studies. Compared with pre-G CD4+ T cells, alloantigen-activated post-G CD4+ T cells preferentially expressed markers associated with memory T cells, in conjunction with reduced levels of CD28 and CD62L. Collectively, these data demonstrate that CD4+ T cells exposed to G-CSF in vivo acquire the properties of T regulatory (Tr) cells once triggered in vitro through the T-cell receptor, including a peculiar cytokine production profile (IL-10++TGF-β1+IL-2low/−IL-4low/−), an intrinsic low proliferative capacity, and a contact-independent suppression of antigen-driven proliferation. Tr cells generated ex vivo after exposure to G-CSF might be clinically relevant for transplantation medicine and for the treatment of human immune-mediated diseases.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 743-756 ◽  
Author(s):  
Xiao-Jie He ◽  
Yan Ding ◽  
Wei Xiang ◽  
Xi-Qiang Dang

Background/Aims: The study aims to elucidate the roles of 1,25(OH)2D3 and vitamin D receptor (VDR) in the pathogenesis of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) by regulating the activation of CD4+ T cells and the PKCδ/ERK signaling pathway. Methods: From January 2013 to December 2015, a total of 130 SLE patients, 137 RA patients and 130 healthy controls were selected in this study. Serum levels of 1,25(OH)2D3 and VDR mRNA expression were detected by ELISA and real-time fluorescence quantitative PCR (RT-qPCR). Density gradient centrifugation was performed to separate peripheral blood mononuclear cells (PBMCs). CD4+ T cells were separated using magnetic activated cell sorting (MACS). CD4+T cells in logarithmic growth phase were collected and assigned into 9 groups: the normal control group, the normal negative control (NC) group, the VDR siRNA group, the RA control group, the RA NC group, the VDR over-expressed RA group, the SLE control group, the SLE NC group, and the VDR over-expressed SLE group. The mRNA and protein expressions of VDR, PKCδ, ERK1/2, CD11a, CD70 and CD40L were detected by RT-qPCR and Western blotting. Bisulfite genomic sequencing was conducted to monitor the methylation status of CD11a, CD70 and CD40L. Results: Compared with healthy controls, serum 1,25(OH)2D3 level and VDR mRNA expression in peripheral blood were decreased in SLE patients and RA patients. With the increase of concentrations of 1,25(OH)2D3 treatment, the VDR mRNA expression and DNA methylation levels of CD11a, CD70 and CD40L were declined, while the expressions of PKCδ, ERK1/2, CD11a, CD70 and CD40L were elevated in SLE, RA and normal CD4+T cells. Compared with the SLE contro, RA control, SLE NC and RA NC groups, the expressions of PKCδ, ERK1/2, CD11a, CD70 and CD40L decreased but DNA methylation levels of CD11a, CD70 and CD40L increased in the VDR over-expressed SLE group and VDR over-expressed RA group. However, compared with the normal control and normal NC groups, the expressions of PKCδ, ERK1/2, CD11a, CD70 and CD40L increased, but DNA methylation levels of CD11a, CD70 and CD40L decreased in the VDR siRNA group. Compared with the normal control group, the expressions of PKCδ, ERK1/2, CD11a, CD70 and CD40L increased, but DNA methylation levels of CD11a, CD70 and CD40L decreased in the SLE control and RA control groups. Conclusion: Our study provide evidence that 1,25(OH)2D3 and VDR could inhibit the activation of CD4+ T cells and suppress the immune response of SLE and RA through inhibiting PKCδ/ERK pathway and promoting DNA methylation of CD11a, CD70 and CD40L.


2017 ◽  
Vol 114 (9) ◽  
pp. E1678-E1687 ◽  
Author(s):  
Manuel Zeitelhofer ◽  
Milena Z. Adzemovic ◽  
David Gomez-Cabrero ◽  
Petra Bergman ◽  
Sonja Hochmeister ◽  
...  

Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.


1998 ◽  
Vol 188 (10) ◽  
pp. 1849-1857 ◽  
Author(s):  
Wanjun Chen ◽  
Wenwen Jin ◽  
Sharon M. Wahl

Evidence indicates that cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) may negatively regulate T cell activation, but the basis for the inhibitory effect remains unknown. We report here that cross-linking of CTLA-4 induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. CD4+ T helper type 1 (Th1), Th2, and Th0 clones all secrete TGF-β after antibody cross-linking of CTLA-4, indicating that induction of TGF-β by CTLA-4 signaling represents a ubiquitous feature of murine CD4+ T cells. Stimulation of the CD3–T cell antigen receptor complex does not independently induce TGF-β, but is required for optimal CTLA-4–mediated TGF-β production. The consequences of cross-linking of CTLA-4, together with CD3 and CD28, include inhibition of T cell proliferation and interleukin (IL)-2 secretion, as well as suppression of both interferon γ (Th1) and IL-4 (Th2). Moreover, addition of anti–TGF-β partially reverses this T cell suppression. When CTLA-4 was cross-linked in T cell populations from TGF-β1 gene–deleted (TGF-β1−/−) mice, the T cell responses were only suppressed 38% compared with 95% in wild-type mice. Our data demonstrate that engagement of CTLA-4 leads to CD4+ T cell production of TGF-β, which, in part, contributes to the downregulation of T cell activation. CTLA-4, through TGF-β, may serve as a counterbalance for CD28 costimulation of IL-2 and CD4+ T cell activation.


2017 ◽  
Vol 24 (10) ◽  
pp. 1288-1300 ◽  
Author(s):  
Sabrina Ruhrmann ◽  
Ewoud Ewing ◽  
Eliane Piket ◽  
Lara Kular ◽  
Julio Cesar Cetrulo Lorenzi ◽  
...  

Background: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors. Objective: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC). Methods: We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression. Results: We observed significant methylation differences in the VMP1/MIR21 locus, with RR-MS displaying higher methylation compared to SP-MS and HC. VMP1/MIR21 methylation did not correlate with a known MS risk variant in VMP1 or smoking but displayed a significant negative correlation with age and the levels of mature miR-21 in CD4+ T cells. Accordingly, RR-MS displayed lower levels of miR-21 compared to SP-MS, which might reflect differences in age between the groups, and healthy individuals and a significant enrichment of up-regulated miR-21 target genes. Conclusion: Disease-related changes in epigenetic marking of MIR21 in RR-MS lead to differences in miR-21 expression with a consequence on miR-21 target genes.


2018 ◽  
Vol 96 (12) ◽  
pp. 1218-1225 ◽  
Author(s):  
Amal R Ebrahim ◽  
Mohamed El-Mesery ◽  
Amro El-Karef ◽  
Laila A. Eissa

We investigated the role of vitamin D (Vit D) alone and in combination with 5-fluorouracil (5-FU) in thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) in rats. Fifty male Sprague–Dawley rats were randomized into a control group and 4 groups that received TAA (200 mg/kg, i.p.) twice per week for 16 weeks. These 4 groups were further divided as follows: HCC group; 5-FU group (75 mg/kg, i.p., once weekly for 3 weeks starting from the 12th week); Vit D group (200 IU/kg daily by oral tube for 16 weeks); and 5-FU + Vit D group (received the previously mentioned dosage regimens of 5-FU and Vit D). HCC was detected by histopathological changes in liver sections and the elevation of serum α-fetoprotein (AFP). Treatment with 5-FU + Vit D significantly decreased gene expression of nuclear factor erythroid 2-related factor 2 (NrF2) and transforming growth factor β1 (TGF-β1) at both the gene and protein level and serum AFP concentrations in comparison with their corresponding monotherapy. Moreover, 5-FU + Vit D treatment enhanced apoptosis by increasing caspase-3 gene and protein expression. Conclusively, Vit D enhances antitumor activity of 5-FU in an HCC-induced model and improves liver function of treated animals. Combination therapy in a TAA-induced HCC rat model was more effective than 5-FU or Vit D through the modulation of TGF-β1, caspase-3, and NrF2 expressions.


Author(s):  
Wagner Vargas Souza Lino ◽  
André Luis Lacerda Bachi ◽  
José Arruda Mendes Neto ◽  
Gabriel Caetani ◽  
Jônatas Bussador do Amaral ◽  
...  

Abstract Introduction Combination of chronic inflammation and an altered tissue remodeling process are involved in the development of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP). Studies demonstrated that mesenchymal stem cells expressing the progenitor gene CD133 were involved in a significant reduction of the chronic inflammatory process in the polypoid tissue. Objective To evaluate the levels of CD133 (Prominin-1) in nasal polypoid tissue and its correlation with interleukin-8 (IL-8) and transforming growth factor β1 (TGF-β1). Methods A total of 74 subjects were divided in the following groups: control group (n = 35); chronic rhinosinusitis with nasal polyps nonpresenting comorbid asthma and aspirin intolerance (CRSwNPnonAI) group (n = 27); and chronic rhinosinusitis with nasal polyps presenting comorbid asthma and aspirin intolerance (CRSwNPAI) group (n = 12). Histologic analysis and also evaluation of the concentration of CD133, IL-8, and TGF-β1 by enzyme-linked immunosorbent assay (ELISA) kits were performed in nasal tissue obtained from nasal polypectomy or from middle turbinate tissue. Results Higher eosinophilic infiltration was found in both CRSwNP groups by histologic analysis. Lower levels of TGF-β1 and IL-8 were observed in both CRSwNP groups when compared with the control group, whereas the CD133 levels were significantly reduced only in the CRSwNPnonAI group compared with the control group. Conclusion It was demonstrated that the nasal mucosa presenting polyposis showed a significant reduction of CD133 levels, and also that this reduction was significantly correlated with the reduction of TGF-β1 levels, but not with IL-8 levels. Therefore, these findings may be involved in the altered inflammatory and remodeling processes observed in the nasal polyposis.


2021 ◽  
Vol 22 (10) ◽  
pp. 5251
Author(s):  
Ming-Yieh Peng ◽  
Wen-Chih Liu ◽  
Jing-Quan Zheng ◽  
Chien-Lin Lu ◽  
Yi-Chou Hou ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still an ongoing global health crisis. Immediately after the inhalation of SARS-CoV-2 viral particles, alveolar type II epithelial cells harbor and initiate local innate immunity. These particles can infect circulating macrophages, which then present the coronavirus antigens to T cells. Subsequently, the activation and differentiation of various types of T cells, as well as uncontrollable cytokine release (also known as cytokine storms), result in tissue destruction and amplification of the immune response. Vitamin D enhances the innate immunity required for combating COVID-19 by activating toll-like receptor 2. It also enhances antimicrobial peptide synthesis, such as through the promotion of the expression and secretion of cathelicidin and β-defensin; promotes autophagy through autophagosome formation; and increases the synthesis of lysosomal degradation enzymes within macrophages. Regarding adaptive immunity, vitamin D enhances CD4+ T cells, suppresses T helper 17 cells, and promotes the production of virus-specific antibodies by activating T cell-dependent B cells. Moreover, vitamin D attenuates the release of pro-inflammatory cytokines by CD4+ T cells through nuclear factor κB signaling, thereby inhibiting the development of a cytokine storm. SARS-CoV-2 enters cells after its spike proteins are bound to angiotensin-converting enzyme 2 (ACE2) receptors. Vitamin D increases the bioavailability and expression of ACE2, which may be responsible for trapping and inactivating the virus. Activation of the renin–angiotensin–aldosterone system (RAS) is responsible for tissue destruction, inflammation, and organ failure related to SARS-CoV-2. Vitamin D inhibits renin expression and serves as a negative RAS regulator. In conclusion, vitamin D defends the body against SARS-CoV-2 through a novel complex mechanism that operates through interactions between the activation of both innate and adaptive immunity, ACE2 expression, and inhibition of the RAS system. Multiple observation studies have shown that serum concentrations of 25 hydroxyvitamin D are inversely correlated with the incidence or severity of COVID-19. The evidence gathered thus far, generally meets Hill’s causality criteria in a biological system, although experimental verification is not sufficient. We speculated that adequate vitamin D supplementation may be essential for mitigating the progression and severity of COVID-19. Future studies are warranted to determine the dosage and effectiveness of vitamin D supplementation among different populations of individuals with COVID-19.


Sign in / Sign up

Export Citation Format

Share Document