scholarly journals ALTERNATIVE METHODS OF SYNTHESIS OF NOVEL HETEROSYNTHONES – FUNCTIONALIZED HYPOXANTHINE PYRIMIDINES

2021 ◽  
Vol 26 (2(78)) ◽  
pp. 32-39
Author(s):  
V. M. Povstyanoy ◽  
T. A. Yuyrova ◽  
A. N. Retchitskiy ◽  
A. A. Krysko

It has been known that derivatives of dihydropyrimidine and xanthine possess the physiological activity of the wide spectrum of action. The combination of the specified heterocyclic fragments within one molecule can lead to the increase of its known types of biological activity as well as to the discovery of novel types of activity. We have previously reported the synthesis of intermediates, which consist of functionalized dihydropyrimidines, connected via a methylene bridge with the halogen substituted derivatives of the ophylline, 3-methylxanthine and imidazole. It was also observed that these compounds would react with N‑nucleophiles with the formation of various branched and cyclic products. The aim of this work was to determine the optimal conditions for obtaining heterocyclic products as a result of conjugation of bromomethyldihydropyrimidine and hypoxanthine at the positions C6 and C1 via a methylene bridge. It is important to note, that the latter can be widely modified by using structurally diverse aromatic aldehydes during the synthesis of dihydropyrimidine core by using Biginelli reaction, which explains structural diversity of the reaction products. After having tried various reaction conditions, we have concluded that the optimal method for obtaining the products entailed keeping equimolar ratios of bromomethyl substituted dihydropyrimidines and 1-potassium‑2-chloro‑7-methylhypoxanthine in dry ethanol for 4 hours. The ester group at the C5 of dihydropyrimidine ring and a chlorine leaving group at C2 of hypoxanthine fragments of the molecule allow to consider these structures as pro missing synthons for farther synthesis of condensed pyrimidine and xanthine systems. The structures of novel compounds have been confirmed with the methods such as HPLC/MS, 1H, and 13C NMR spectroscopy.

2021 ◽  
Vol 25 ◽  
Author(s):  
Samvel N. Sirakanyan ◽  
Domenico Spinelli ◽  
Victor A. Kartsev ◽  
Athina Geronikaki ◽  
Elmira K. Hakobyan ◽  
...  

Aims: Biological studies have shown that some condensed derivatives of pyrano[3,4-c]pyridines 6 exhibited pronounced biological activity. Considering these results, the principal aim of this work is to study the regiochemistry of the synthesis of pyrano[3,4-c]pyridines 6, optimize the reaction conditions, and increase the previously observed low yields of pyrano[3,4-c]pyridines. Background: Several years ago, a method for the preparation of 6-oxopyrano[3,4-c]pyridines 6 starting from 2,2-dimethyltetrahydro-4H-pyran-4-one 1 was developed. In this study, we have separated and identified only the most expected reaction products of 6-oxopyrano[3,4-c]pyridines 6. On the basis of this datum, we suggested that the enamines 2 and 3 reacting with acyl chlorides were not acylated at C-3 and that 5-acylpyran-4-ones 4 were the only products of the reaction. We have justified this result by considering the steric effects exerted by the two methyl groups present in the pyran ring. Moreover, we did not identify the products at the second reaction center: that is, the isomeric compounds 7. This result was justified considering the different reactivity of aliphatic and cyclic ketone groups. Objective: The main objectives of this work are as follows: a) implementation of the reaction of 2,2-dimethyltetrahydro-4H-pyran-4-one 1 with morpholine; b) acylation of the obtained enamines 2 and 3 with acyl chlorides under Stork conditions; c) synthesis of pyranopyridines 6–8 based on β-diketones: 3-acylpyran-4-ones 4 and 5-acylpyran-4-ones 5; d) confirmation of the structure of the obtained compounds. Method: For the synthesis of pyrano[3,4-c]pyridines, known methods were used. Thus, the reaction of starting 2,2-dimethyltetrahydro-4H-pyran-4-one 1 with morpholine in benzene led to the formation of isomeric enamines 2 and 3. Then, they were acylated with acyl chlorides under Stork conditions with the formation of two β-diketones: 3-acylpyran-4-ones 4 and 5-acylpyran-4-ones 5. Finally, in order to obtain the aimed pyrano[3,4-c]pyridines 6, the obtained β-dicarbonyl compounds 4 and 5 (as a mixture of isomers) were reacted with 2-cyanoacetamide in ethanol in the presence of diethylamine, according to the Knoevenagel condensation. The structure of the obtained compounds has been unambiguously confirmed by using a wide spectrum of physicochemical methods (NMR, IR, X-ray structural and elemental analysis) and, in the instance of compounds 7, also by an alternative synthesis. Results: Starting from the 2,2-dimethyltetrahydro-4H-pyran-4-one 1, a series of new and already known 6-oxopyrano[3,4-c]pyridines 6 were synthesized. As a result of the study of the regiochemistry in the synthesis of pyrano[3,4-c]pyridines, out of the four possible isomer pyranopyridines 6−9, we have succeeded to identify three of them (6−8). Thus, isomer pyranopyridines 7 and 8 were identified in the mixture with the main compounds 6. Moreover, isomeric pyrano[3,4-c]pyridines 8 were detected when alkyl groups are present in the starting compounds 4 and 5, while isomeric pyrano[4,3-b]pyridines 7 were detected in the case of the presence of aromatic groups. Unfortunately, we have not been able to isolate compounds 7 and 8 in the pure state from the reaction mixtures. Currently, we have not been able to detect and identify isomeric pyrano[4,3-b]pyridines 9. On the whole, we have been able to increase the effectiveness of the synthesis of pyrano[3,4-c]pyridines 6, increasing their yields by ≈ 5–15%. Conclusion: As a result of our investigation, we have found that the acylation reaction of enamines 2 and 3 and the cyclization reaction of β-diketones 4 and 5 are not regioselective. Therefore we can state that enamines 2 and 3 can be acylated at both C-3 and C-5 with the formation of a mixture of 3-acylpyran-4-ones 4 and 5-acylpyran-4-ones 5. Their condensation with 2-cyanoacetamide led to the formation of mixtures of regioisomeric pyranopyridines 6−8. In conclusion, as a result of our present research, we can say that we have been able to increase the effectiveness of the synthesis of pyranopyridines, largely improving our previous results։ Other: Currently, we are working to look for the fourth isomeric pyrano[4,3-b]pyridines 9 by using the most modern and fine methods. Moreover, we hope that we would be able to separate the mixtures of pyranopyridines 6–8 so that they can be used for further syntheses.


Author(s):  
Anastasiya V. Rybakova ◽  
Dmitry G. Kim ◽  
Elena I. Danilina ◽  
Olesya V. Sazhaeva ◽  
Marina A. Ezhikova ◽  
...  

Derivatives of 1,2,4-triazine-3-thione exhibit biological activity in a wide range. They have optoelectronic properties and can be used as synthons in synthesis of various pyridines by the Diels-Alder reaction. 1,2,4-Triazines are of the greatest interest, for organic synthesis in particular. In the present study we have established that the interaction of 3-propargylsulfanyl-5-phenyl-1,2,4-triazine, obtained by alkylation of 5-phenyl-2,3-dihydro-1,2,4-triazine-3-thione with 3-bromopropyne in acetone in the presence of triethylamine, with halogens leads to annelation of thiazole cycle. At that, [1,3]thiazolo[3,2-b][1,2,4]triazinium systems contain either endo- or exocyclic double bond in their structure, depending on the halogen type. By way of example, iodine acting on propargyl sulfide forms a dark precipitate of (3Z)-3-iodomethylene-7-phenyl-2,3-dihydro-[1,3]thiazolo[3,2-b][1,2,4]triazinium triiodide, the structure of which has been confirmed by 1H and 13C NMR spectroscopy, including two-dimensional 2D  1H-13C HSQC, HMBC and 1H-1H NOESY experiments. Treatment of the obtained triiodide by sodium iodide in acetone leads to synthesis of the corresponding monoiodide, which precipitates from the reaction mixture as a dark red precipitate. Reaction with bromine, as distinct from heterocyclization under iodine action, comprises an unusual cascade reaction including the stages of electrophile heterocyclization, bromine addition, and hydrogen bromide elimination, which leads to formation of 3-dibromomethyl-7-phenyl[1,3]thiazolo[3,2-b][1,2,4]triazinium bromide. It should be pointed out that the identifying feature of 3-propargylsulfanyl-5-phenyl-1,2,4-triazine  heterocyclization under iodine and bromine action is the signal bias of the aromatic proton in a triazine ring towards weak field in the 1H NMR spectrum of the reaction products. This is presumably associated with formation of the positively charged nitrogen atom.


2017 ◽  
Vol 14 (3) ◽  
pp. 564-574 ◽  
Author(s):  
Baghdad Science Journal

In this research four steps of the new derivatives of Naproxen drug have been made which are known as a high medicinal effectiveness; the first step involved converting Naproxen into the corresponding ester (A) by reaction Naproxen with methanol absolute in presence H2SO4. While the second step involved treatment methyl Naproxen ester (A) with hydrazine hydrate 80% in presence of ethanol .The third reaction requires synthesis of Schiff bases (C1-C10) by condensation. of Naproxen hydrazide (B) with many substituted aromatic aldehydes . Finally, the fourth step synthesized new tetrazole derivatives ( D1- D10) by the reaction of the prepared Schiff bases (in the third step) with Sodium azide in THF as a solvent .The prepared compounds were characterized by physical properties ,(FT-IR) ,UV, and somewhat of them by 1H-NMR, 13C-NMR spectroscopy.


2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.


2020 ◽  
Vol 23 (2) ◽  
pp. 157-167
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Objective: A facile and efficient method for synthesis of 3, 4-dihydropyrimidin-2(1H)-ones via Biginelli reaction catalyzed by a novel dicationic Brönsted acidic ionic liquid, [(EtNH2)2SO][HSO4]2, has been successfully developed. Material and Method:: 3, 4-Dihydropyrimidin-2(1H)-ones were synthesized through one-pot condensation of aromatic aldehydes, ethyl acetoacetate, and urea under solvent-free conditions using [(EtNH2)2SO][HSO4]2 as a novel catalyst. The progress of the reaction was monitored by thin-layer chromatography (ethyl acetate / n-hexane = 1 / 5). The products have been characterized by IR, 1H NMR, 13C NMR, and also by their melting points. Results: In this research, a library of dihydropyrimidinone derivatives was synthesized via Biginelli reaction under solvent-free conditions at 120oC using [(EtNH2)2SO][HSO4]2 as a catalyst. Various aromatic aldehydes, as well as heteroaromatic aldehydes, were employed, affording good to high yields of the corresponding products and illustrating the substrate generality of the present method. In addition, the prepared dicationic Brönsted acidic ionic liquid can be easily recovered and reused. Conclusion: 1, 1’-Sulfinyldiethylammonium bis (hydrogen sulfate), as a novel dicationic ionic liquid, can act as a highly efficient catalyst for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions.


2012 ◽  
Vol 77 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Ritu Sharma ◽  
Pushkal Samadhiya ◽  
Savitri Srivastava ◽  
Santosh Srivastava

A new series of N-[3-(10H-phenothiazinyl)-propyl]-2-(substituted phenyl)-4-oxo-5-( substituted benzylidene)-1,3-thiazolidine-carboxamide, 5(as) have been synthesized. The cycloaddition reaction of thioglycolic acid with N-[3-(10H-phenothiazinyl)-propyl]-N?-[(substituted phenyl)-methylidene]- urea, 3(a-s) in the presence of anhydrous ZnCl2 afforded new heterocyclic compounds N-[3-(10H-phenothiazinyl)-propyl]-2-(substituted phenyl)-4-oxo- 1,3-thiazolidine-carboxamide, 4(a-s). The later product on treatment with several selected substituted aromatic aldehydes in the presence of C2H5ONa undergoes Knoevenagel reaction to yield 5(a-s). The structure of compounds 1, 2, 3(a-s), 4(a-s) and 5(a-s) were confirmed by IR, 1H NMR, 13C NMR, Fmass and chemical analysis. All above compounds were screened for their antimicrobial activity against some selected bacteria and fungi and for antituberculosis activity compounds have been screened against the bacterium M. tuberculosis.


2007 ◽  
Vol 555 ◽  
pp. 423-427 ◽  
Author(s):  
Nenad R. Filipović ◽  
Tamara R. Todorović ◽  
D.M. Sladić ◽  
Irena T. Novaković ◽  
D.A. Jeremić ◽  
...  

New complexes of Pt(II) with condensation derivatives of ethyl hydrazinoacetate and either 2-acetylpyridine or 2-quinolinecarboxaldehyde, and of Pd(II) with the condensation derivative of ethyl hydrazinoacetate and 2-quinolinecarboxaldehyde were synthesized and characterized by elemental analysis, IR, 1H- and 13C-NMR spectroscopy, and molar conductivity measurements. The complexes have a square planar geometry, ligands binding as bidentates in the neutral form, and the remaining two coordination sites being occupied by chloride ions. Biological activity of new complexes, and of previously synthesized Pd(II), Cd(II), Co(III) and Zn(II) complexes with this ligand type was evaluated by the brine shrimp test. All the complexes showed a moderate activity.


2021 ◽  
Vol 25 (11) ◽  
pp. 38-40
Author(s):  
S.R. Jagtap ◽  
R.P. Yadav ◽  
B.B. Bahule ◽  
D.J. Chaudhari

In this study, we are reporting a solvent free Biginelli reaction using aromatic aldehydes, ethyl acetoacetate and urea in presence of cetyl tri-methyl ammonium bromide as a catalyst. The reaction is green and environmentally benign. The yield of three component condensation reaction is excellent. The products were screened for anti-bacterial and anti-fungal activity. The method is simple and convenient. The catalyst is novel and easily available, non-expensive and nontoxic.


2010 ◽  
Vol 3 (2) ◽  
pp. 86-100 ◽  
Author(s):  
Peter Kovacic ◽  
Ratnasamy Somanathan

Resveratrol (RVT) is a naturally occurring trihydroxy stilbene that displays a wide spectrum of physiological activity. Its ability to behave therapeutically as a component of red wine has attracted wide attention. The phenol acts as a protective agent involving various body constituents. Most attention has been given to beneficial effects in insults involving cancer, aging, cardiovascular system, inflammation and the central nervous system. One of the principal modes of action appears to be as antioxidant. Other mechanistic pathways entail cell signaling, apoptosis and gene expression. There is an intriguing dichotomy in relation to pro-oxidant property. Also discussed are metabolism, receptor binding, rationale for safety and suggestions for future work. This is the first comprehensive review of RVT based on a broad, unifying mechanism.


Author(s):  
Monther F. Mahdi ◽  
Noor H. Naser ◽  
Nethal H. Hammud

Objective: The objective of this search was to synthesize a new naproxen analogues having a 1,2,4-triazole-3-thiol heterocyclic ring, and preliminary pharmacological assessment of the anti-inflammatory activity of the synthesized compounds. Methods: The synthesis of naproxen analogues that having 1,2,4-triazole-3-thiol heterocyclic ring occur through esterification of naproxen, and then its reaction with hydrazine hydrate, and carbon disulfide, finally different aromatic aldehydes reacted with triazole derivatives of naproxen containing amino group to produce schiff bases.Results: In vivo acute anti-inflammatory activity of the synthesize compounds (Va-Vd) was evaluated in rats using egg-white induced edema model of inflammation in a dose equivalent to (50 mg/kg) of naproxen. All tested compounds were produced a significant reduction in paw edema with respect to the effect of propylene glycol 50% v/v (control group). Compound Vd produced superior anti-inflammatory activity compared to naproxen.Conclusion: The results obtained in this work give evidence about the valid synthesis of 1,2,4 triazole-3-thiol derivatives of naproxen, which reacted with different aldehydes to yield several schiff bases. The incorporation of benzaldehyde possess para-electron donating group (para-hydroxyl benzaldehyde) will increase the anti-inflammatory activity of naproxen.


Sign in / Sign up

Export Citation Format

Share Document