scholarly journals Scientific breeding of winter bread wheat in the Non-Сhernozem zone of Russia: the history, methods and results

2021 ◽  
Vol 25 (4) ◽  
pp. 367-373
Author(s):  
B. I. Sandukhadze ◽  
R. Z. Mamedov ◽  
M. S. Krakhmalyova ◽  
V. V. Bugrova

The article describes the main stages and achievements of the breeding of winter bread wheat (Triticum aestivum L.) in the Non-Chernozem zone for more than a century. The beginning of breeding work was laid by D.L. Rudzinsky on the experimental field of the Moscow Agricultural Institute. Beginning from the 1940s, under the leadership of Academician N.V. Tsitsin, and then Prof. G.D. Lapchenko, the method of distinct hybridization with blue wheatgrass (Agropyron glaucum (Desf. ex DC.) Roem. & Schult.) was actively used. The resulting wheat-wheatgrass hybrids had an average winter hardiness, increased grain quality and productivity. Cultivar Zarya developed in the 1970s (by individual selection from the F3 cross combination of cv. Mironovskaya 808 × line 126/65 (in the pedigree of this line, there is a wheat-wheatgrass hybrid PPG 599)) had a high yield and was widely used in further crosses. In the 1980s, Academician B.I. Sandukhadze achieved a significant increase in yield by using the method of intermittent backcrosses due to the producing of varieties with a new morphoecotype (cvs Inna, Pamyati Fedina, etc.), namely, winter-hardy, short stemmed (dwarf), and productive. Cultivar Moskovskaya 39 (registration in 1999) was referred to strong wheat, with a stable protein content of 15–16 %, gluten 30–35 %. Produced in the 2000s, cvs Moskovskaya 56, Nemchinovskaya 57, Galina, Nemchinovskaya 24, Nemchinovskaya 17, and Moskovskaya 40 have a high adaptability to the environment of the region; give a high yield and quality of grain. The area of crops of these cultivars in Russia occupies more than 2 million ha. The current trends in wheat breeding are indicated, the production yield of commercial cultivars of breeding by the Federal Research Center “Nemchinovka”over 12.0 tons per ha and the protein content in the grain up to 17 % are shown. As a result of succession, originality and application of the methodology of scientific breeding, the yield of winter bread wheat in the period from the beginning of the last century to the present has increased from 1.0 to 12.0 and more tons per ha.

2021 ◽  
Vol 1 (2) ◽  
pp. 17-21
Author(s):  
O. A. Nekrasova ◽  
N. S. Kravchenko ◽  
N. G. Ignatieva ◽  
O. V. Skripka ◽  
S. N. Gromova

One of the important tasks facing agriculture is to increase the production of high quality grain. It is known knowledge that the variety is a dynamic biological factor capable of realizing its genetic potential with a different combination of environmental factors and can act as a biological foundation for the production of high quality grain. The forecrop in modern agriculture acts as an independent factor in increasing grain yield and quality. The purpose of the current study was to estimate protein and gluten content in grain of winter bread wheat varieties of intensive type when sown after maize for grain and sunflower in the conditions of the Rostov region. The objects of the study were 9 winter bread wheat varieties of the intensive type developed in the FSBSI “ARC “Donskoy”. The study was carried out in the fields of the department of winter wheat breeding and seed production in 2018–2020. There were identified the varieties that formed the largest percentage of protein in grain on average over the years of study. They were the varieties ‘Etyud’, ‘Yubiley Dona’ and ‘Shef’ (12.44–13.06%) sown after maize for grain, and the varieties ‘Rubin Dona’, ‘Shef’ and ‘Zodiak’ (14.09–14.33%) sown after sunflower. There have been identified the varieties ‘Zodiak’ and ‘Yubiley Dona’ with the largest amount of gluten in grain on average over the years of study. They produced 24.63%, 25.53%, respectively after maize for grain; after sunflower they produced 28.20%, 27.66%, respectively. The results of two-way analysis of variance proved a greater effect of the factor ‘forecrop’ on protein and gluten content in grain of winter bread wheat than the effect of the factor ‘variety’ and their correlation.


2016 ◽  
Vol 12 (2) ◽  
pp. 279-284 ◽  
Author(s):  
SK Sarkar ◽  
MAR Sarkar ◽  
N Islam ◽  
SK Paul

An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh, to study the yield and quality of aromatic fine rice as affected by variety and nutrient management during the period from June to December 2013. The experiment comprised three aromatic fine rice varieties viz. BRRI dhan34, BRRI dhan37 and BRRI dhan38, and eight nutrient managements viz. control (no manures and fertilizers), recommended dose of inorganic fertilizers, cowdung at 10 t ha-1, poultry manure at 5 t ha-1, 50% of recommended dose of inorganic fertilizers + 50% cowdung, 50% of recommended dose of inorganic fertilizers + 50% poultry manure, 75% of recommended dose of inorganic fertilizers + 50% cowdung and 75% of recommended dose of inorganic fertilizers + 50% poultry manure. The experiment was laid out in a randomized complete block design with three replications. The tallest plant (142.7 cm), the highest number of effective tillers hill(10.02), number of grains panicle (152.3), panicle length (-1 -122.71cm), 1000-grain weight (15.55g) and grain yield (3.71 t ha-1) were recorded in BRRI dhan34. The highest grain protein content (8.17%) was found in BRRI dhan34 whereas the highest aroma was found in BRRI dhan37 and BRRI dhan38. The highest number of effective tillers hill(11.59), number of grains panicle (157.6), panicle length (24.31 cm-1-1) and grain yield (3.97 t ha-1) were recorded in the nutrient management of 75% recommended dose of inorganic fertilizers + 50% cowdung (5 t ha-1). The treatment control (no manures and fertilizers) gave the lowest values for these parameters. The highest grain yield (4.18 t ha-1) was found in BRRI dhan34 combined with 75% recommended dose of inorganic fertilizers + 50% cowdung, which was statistically identical to BRRI dhan34 combined with 75% of recommended dose of inorganic fertilizers + 50% poultry manure and the lowest grain yield (2.7 t ha-1) was found in BRRI dhan37 in control (no manures and fertilizers). The highest grain protein content (10.9 %) was obtained in the interaction of BRRI dhan34 with recommended dose of inorganic fertilizers which was as good as that of BRRI dhan38 and 75% of recommended dose of inorganic fertilizers + 50% poultry manure. The highest aroma was found in BRRI dhan38 combined with 75% recommended dose of inorganic fertilizers + 50% cowdung.J. Bangladesh Agril. Univ. 12(2): 279-284, December 2014


Author(s):  
Fakhrusy Zakariyya ◽  
Adi Prawoto

An optimum physiological condition will support high yield and quality of cocoa production. The research was aimed to study the effects of stomatal conductance and chlorophyll content related to cocoa production under three shade regimes.This research was conducted in Kaliwining Experimental Station, elevation of 45 m above sea level with D climate type based on Schmidt & Fergusson. Cocoa trees which were planted in 1994 at a spacing of 3 X 3 m were used in the study planted by using split plot design. The shade tree species were teak (Tectona grandis), krete (Cassiasurattensis), and lamtoro (Leucaena sp.) as the main plots, and cocoa clones of Sulawesi 01,Sulawesi 02, KKM 22 and KW 165 as sub plots. This study showed that there was interaction between cocoa clone and shade species for stomatal conductance where stomatal diffusive resistance of KKM 22 was the best under Leucaena sp.and Cassiasurattensis with the values of 1.38 and 1.34 s.cm -1, respectively. The highest chlorophyll content, stomatal index and transpiration values was under Leucaena sp. shade. There was positive correlation between chlorophyll content and transpiration with pod yield of cocoa. The highest yield and the lowest bean count wereobtainedon Sulawesi 01 clone under Leucaenasp. shade.Keywords: stomatal conductance, transpiration, diffusive resistance, shades trees, clones,pod yield


AGROFOR ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
S.F. EL-SAYED ◽  
A.A. GAHRIB ◽  
Rasha R. EID

This investigation was carried out during the two summer seasons of 2015 and2016 in sandy soil on potato culitvar "Sante" to study the effect of using 100%compost (15 t/fed.) and 50% compost + nitrogen fixing bacteria (Azotobacter, andPseudomonas alone or together) on potato yield and quality as compared to theconventional mineral fertilization (120-75-150 kg/fed. NPK + 5 toncompost/fed.(control)). No significant differences in tubers yield/fed. were detectedbetween mineral fertilization (control) and using 100% compost (15t/fed).However, control treatment significantly produced a high yield per feddan,more than using 50% compost + any biofertilizer treatment.Using composttreatment at 15 t/fed.execeed all biofertilizer treatments in marketable yield in bothseasons, but without significant differences as compared with mineral fertilization(control).No significant differences in tuber dray matter and content of starch intuber were found between using compost treatment at 15 ton/fed. and mineralfertilization treatment (control)in both seasons. Nevertheless, application of 50%compost+ 4 applications of Azotobacter and Pseudomonas had the highest tuberconcentrations of starch and nitrogen with significant differences as compared withthe mineral fertilization.Using50% compost + 4 applications of Azotobacter orPseudomonas or both (Azotobacter + Pseudomonas )and application of 100%compost caused producing potato tubers with the lowest concentration of nitratewith significant differences as compared with the mineral fertilization. Nosignificant differences were detected between mineral and organic fertilizersconcerning P and K concentrations in tubers.


1980 ◽  
Vol 60 (3) ◽  
pp. 807-811 ◽  
Author(s):  
R. S. FULKERSON

Midas marrowstem kale (Brassica oleracea L.) was grown in different row width associations with United 106 corn (Zea maize L.) in two studies and ensiled in different moisture blends with corn stover in another. Highest dry matter yields were obtained where a single row of kale was grown at 30 cm to the side of a corn row. This combination also provided the lowest moisture content feed and the highest in vitro digestibility and crude protein content. Changing the corn row width had no significant effect upon yield, plant height, in vitro digestibility, kale leaf or corn ear content. Blending kale with corn stover to provide a silage of about 70% moisture increased the digestibility and protein content of the feed and provided a silage that kept well in storage.


2018 ◽  
Vol 47 (1) ◽  
pp. 183-193 ◽  
Author(s):  
Tuncay TURSUN ◽  
Sener AKINCI ◽  
Esin BOZKURT

Boron is an important micronutrient, required for all plant growth, and critical for high yield and quality of crops. The aim of the present research was to determine the effects of boron on pot-grown parsley (Petroselinum sativum Hoffm.). The experimental design consisted of four treatments using Hoagland-Arnon (1950) nutrient solutions with two different boron concentrations (B1 - 15 ppm and B2 - 150 ppm), each with and without 10 ml humic acid addition (HB1 and HB2), and controls with full strength Hoagland-Arnon solutions. Growth analyses of the parsley revealed that 15 ppm boron application caused an increase in root length leaf fresh and dry weight root fresh and dry weight and leaf area compared to control values. 150 ppm B (B2) concentration decreased all growth parameters compared to controls. The two humic acid treatments (HB1 and HB2) did not increase any of those growth parameters either in controls (C) or in the two boron (B1 and B2) concentrations. Analysis by (ICP-MS) revealed that B content in the leaves increased gradually in B1 and B2, as well as in both humic treatments where in HB2 it increased to 99.38% compared to B1. In the leaves, Mn, Zn and Fe contents behaved the same as B, increasing in all treatments, with the amounts in HB2 being significantly greater than in C, B1 and B2 leaves.


2020 ◽  
Vol 54 (6) ◽  
pp. 536-545
Author(s):  
Jussi Helppi ◽  
Ronald Naumann ◽  
Oliver Zierau

One of the most commonly used protein sources in rodent diets is soy, which is naturally rich in phytoestrogens. Although phytoestrogens have shown potential health benefits in humans, they may also have the ability to disrupt reproduction. Consequently, there has been a tendency to try to exclude them from rodent diets. In the current study, we investigated whether phytoestrogen content in the mouse diet could affect reproduction in mice used as embryo donors. Donor mice (C57BL/6JOlaHsd) were maintained with three different diets: high phytoestrogen (ca. 400 mg/kg genistein), low phytoestrogen (ca. 10 mg/kg genistein) and standard breeding diet (ca. 120 mg/kg genistein). Mice fed a high phytoestrogen diet had a high yield of plugs, embryos, and injectable embryos, as well as producing good quality embryos. Results from donor mice fed a low phytoestrogen diet were consistently but only slightly inferior, whereas mice fed a standard diet performed the poorest. Interestingly, the largest number of born and weaned offspring were observed when recipient females received embryos from the standard diet group. Sperm yield and quality of stud males did not differ between the groups. We surmize that for experimental endpoints requiring fertilized embryos it may be more beneficial to feed mice a diet containing phytoestrogen, but if the goal is to produce transgenic mice, a diet high in phytoestrogen may be inadvisable. In conclusion, care should be taken when selecting a diet for experimental mouse colonies as phytoestrogen could influence the study outcome.


1939 ◽  
Vol 17c (11) ◽  
pp. 380-387 ◽  
Author(s):  
B. Peturson ◽  
Margaret Newton

A study was made at Winnipeg in 1938 to determine the effect of leaf rust on the yield and quality of Thatcher and Renown wheat. In one experiment, Thatcher and Renown were sown late in 1/400-acre plots; in another, Thatcher only was used and was sown early in rod-row plots. Half the plots of each variety were kept as free from leaf rust as possible by frequent applications of sulphur dust, but the remaining half became heavily infected. In the 1/400-acre plots, leaf rust reduced the yield of Thatcher and Renown by 51.17 and 29.61%, respectively; in the rod-row plots of Thatcher, it reduced the yield by 37.02%. The decrease in yield was due more to reduction in kernel weight than to reduction in number of kernels per head. All the non-dusted plots ripened approximately three days earlier than the dusted, and the grain from them graded one grade lower than that from the corresponding dusted plots. In both varieties, the protein content was diminished while the carotene content was increased.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Juansheng Ren ◽  
Fan Zhang ◽  
Fangyuan Gao ◽  
Lihua Zeng ◽  
Xianjun Lu ◽  
...  

AbstractThe yield heterosis of rice is sought by farmers and strong contributes to food safety, but the quality of hybrid rice may be reduced. Therefore, developing new varieties with both high yield and good quality is a heavily researched topic in hybrid rice breeding. However, the molecular mechanism governing yield heterosis and high rice quality has not been elucidated to date. In this study, a comparative transcriptomics and genomic analysis was performed on a hybrid rice variety, Chuanyou6203 (CY6203), and its parents to investigate the molecular mechanism and gene regulation network governing the formation of yield and quality stages. A total of 66,319 SNPs and InDels between CH3203 and C106B were detected in the 5′-UTR, exon, intronic, and 3′-UTR regions according to the reference genome annotation, which involved 7473 genes. A total of 436, 70, 551, 993, and 1216 common DEGs between CY6203 and both of its parents were identified at the same stage in panicles and flag leaves. Of the common DEGs, the numbers of upregulated DEGs between CY6203 and CH3203 were all greater than those of upregulated DEGs between CY6203 and C106B in panicles and flag leaves at the booting, flowering, and middle filling stages. Approximately 40.61% of mRNA editing ratios were between 0.4 and 0.6, and 1.68% of mRNA editing events (editing ratio ≥ 0.8) in CY6203 favored one of its parents at three stages or a particular stage, suggesting that the hypothetical heterosis mechanism of CY6203 might involve dominance or epistasis. Also 15,934 DEGs were classified into 19 distinct modules that were classified into three groups by the weighted gene coexpression network analysis. Through transcriptome analysis of panicles and flag leaves in the yield and quality stages, the DEGs in the green-yellow module primarily contributed to the increase in the source of CY6203 due to an in increase in photosynthetic efficiency and nitrogen utilization efficiency, and a small number of DEGs related to the grain number added spikelet number per panicle amplified its sink. The balanced expression of the major high-quality alleles of C106B and CH3203 in CY6203 contributed to the outstanding quality of CY6203. Our transcriptome and genome analyses offer a new data set that may help to elucidate the molecular mechanism governing the yield heterosis and high quality of a hybrid rice variety.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 327 ◽  
Author(s):  
Jahirul Islam ◽  
Sun Phil Choi ◽  
Obyedul Kalam Azad ◽  
Ji Woong Kim ◽  
Young-Seok Lim

The yield and quality of potato in South Korea vary with different environmental conditions and all induced varieties do not perform well in every location. There are many suggested reasons for this problem; they include soil topography, temperature, rainfall pattern, etc. This study focused on finding certain potato genotypes based on high yield and quality (marketable rate, uniformity, less physiological disorders, resistance to diseases), and suitability for processing in three agro-ecological regions in South Korea. Thirty-two potato genotypes were cultivated in three regions i.e., Chuncheon (low altitude), Yang-gu (middle altitude), and Pyeong-chang (alpine), along with three major cultivars (Atlantic, Shepody, and Superior) as control. All the potato lines were evaluated for three consecutive years. The results showed that a higher tuber yield was obtained from the genotypes Gangwon Valley, Valley 11, Valley 13, and Valley 92 in Chuncheon; while Valley 13, Valley 43, and Valley 92 in Yang-gu; and Valley 43, Gui Valley and Valley 92 in Pyeong-chang region with a high marketable quality, and lower infection rates and physiological disorders. The results also showed that higher chip lightness was manifested by the genotypes Juice Valley, Gangwon Valley, Rose Valley, Valley 43, and Valley 91 among the high yielding genotypes. Besides, Pyeong-chang (alpine), a high-altitude region with longer maturation time was found more suitable for potato cultivation, especially for higher tuber yield and higher quality products for potato chip processing.


Sign in / Sign up

Export Citation Format

Share Document