scholarly journals Genetics of Inter Cropping for Crop Productivity Enhancement

2021 ◽  
Vol 2 (4) ◽  
pp. 40-45
Author(s):  
Muhammad Nouman Khalid ◽  

Inter cropping which is also known as mixed cropping has ability of increasing usage of nutrient and water efficiently, enhancing crop productivity, and plasticity to abiotic and biotic stress resulted by change in climate. In this agroecological farming method, two or more crops are cultivated together on the same farm area. Cereal with legume is a common combination. Crop selection is not profitable unless characteristics useful in intercrops, such as intercropping in legume and cereal cultivars, are considered. Inter cropping can result in enhanced soil fertility and structure, improved weed suppression, the conservation of soil moisture, and comparatively better control of diseases and pests, resulting greater yield and increased profitability. The biggest benefit of intercropping systems is the fact that they combine above-ground and below-ground benefits: these benefits include both short and tall plant components, which helps them to harness sunlight for photosynthesis, as well as deep and shallow rooted plant components, which assists them in using water and nutrients for crop production. Intercropping is popular in areas of the world including China, Mali, Indonesia, India, Ethiopia, and Niger due to its high growing popularity in agriculture. General & Specific Combining Ability principles in hybrid breeding have been applied for crop combinations and cultivars, and their impacts are recognized as General/ Specific Mixing Ability. The other considerable advantages of intercropping include greater land use efficiency, competitive ability towards weed, favorable exudates from the component legumes, and greater yield stability which cannot be achieved in monocropping. Plant breeding enables intercropping systems to better use their genetic diversity by conducting plant breeding research and harnessing this variability to cross-crop adaptability. High labor inputs in harvesting, higher cost of maintenance and reduction of the main crop are some disadvantages of intercropping.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wenan Yuan ◽  
Nuwan Kumara Wijewardane ◽  
Shawn Jenkins ◽  
Geng Bai ◽  
Yufeng Ge ◽  
...  

Abstract Global crop production is facing the challenge of a high projected demand, while the yields of major crops are not increasing at sufficient speeds. Crop breeding is an important way to boost crop productivity, however its improvement rate is partially hindered by the long crop generation cycles. If end-season crop traits such as yield can be predicted through early-season phenotypic measurements, crop selection can potentially be made before a full crop generation cycle finishes. This study explored the possibility of predicting soybean end-season traits through the color and texture features of early-season canopy images. Six thousand three hundred and eighty-three images were captured at V4/V5 growth stage over 6039 soybean plots growing at four locations. One hundred and forty color features and 315 gray-level co-occurrence matrix-based texture features were derived from each image. Another two variables were also introduced to account for location and timing differences between the images. Five regression and five classification techniques were explored. Best results were obtained using all 457 predictor variables, with Cubist as the regression technique and Random Forests as the classification technique. Yield (RMSE = 9.82, R2 = 0.68), Maturity (RMSE = 3.70, R2 = 0.76) and Seed Size (RMSE = 1.63, R2 = 0.53) were identified as potential soybean traits that might be early predictable.


Author(s):  
Sujata Mulik

Agriculture sector in India is facing rigorous problem to maximize crop productivity. More than 60 percent of the crop still depends on climatic factors like rainfall, temperature, humidity. This paper discusses the use of various Data Mining applications in agriculture sector. Data Mining is used to solve various problems in agriculture sector. It can be used it to solve yield prediction.  The problem of yield prediction is a major problem that remains to be solved based on available data. Data mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. In this paper we have focused on predicting crop yield productivity of kharif & Rabi Crops. 


Author(s):  
Hasrat Arjjumend ◽  
Konstantia Koutouki ◽  
Olga Donets

The use of unsustainable levels of chemical fertilizers and plant protection chemicals has resulted in a steady decline in soil and crop productivity the world over. Soil biology has undergone irreversible damage, coupled with a high concentration of toxic chemical residues in plant tissues and human bodies. Agricultural practices must evolve to sustainably meet the growing global demand for food without irreversibly damaging soil. Microbial biocontrol agents have tremendous potential to bring sustainability to agriculture in a way that is safe for the environment. Biopesticides do not kill non-target insects, and biosafety is ensured because biopesticides act as antidotes and do not lead to chemical contamination in the soil. This article is part of a larger study conducted in Ukraine by researchers at the Université de Montréal with the support of Mitacs and Earth Alive Clean Technologies. The responses of farmers who use biofertilizers (“user farmers”) and those who do not (“non-user farmers”), along with the responses of manufacturers or suppliers of biofertilizers, and research and development (R&D) scientists are captured to demonstrate the advantages of applying microbial biopesticides to field crops. Participants reported a 15-30% increase in yields and crop production after the application of biopesticides. With the use of biopesticides, farmers cultivated better quality fruits, grains, and tubers with a longer shelf life. Moreover, while the risk of crop loss remains high (60-70%) with chemically grown crops, this risk is reduced to 33% on average if crops are grown using biopesticides. The findings indicate that a large proportion of farmers would prefer to use biopesticides if they are effective and high quality products. In this context, the quality and effectiveness of products is therefore very important. Despite their benefits to soil, human health, and ecosystems, biopesticides face significant challenges and competition vis-à-vis synthetic pesticides for a variety of reasons. Therefore, the development of biopesticides must overcome the problems of poor quality products, short shelf life, delayed action, high market costs, and legal/registration issues.


2021 ◽  
Vol 13 (4) ◽  
pp. 1985
Author(s):  
Musa Al Murad ◽  
Kaukab Razi ◽  
Byoung Ryong Jeong ◽  
Prakash Muthu Arjuna Samy ◽  
Sowbiya Muneer

A reduction in crop productivity in cultivable land and challenging environmental factors have directed advancement in indoor cultivation systems, such that the yield parameters are higher in outdoor cultivation systems. In wake of this situation, light emitting diode (LED) lighting has proved to be promising in the field of agricultural lighting. Properties such as energy efficiency, long lifetime, photon flux efficacy and flexibility in application make LEDs better suited for future agricultural lighting systems over traditional lighting systems. Different LED spectrums have varied effects on the morphogenesis and photosynthetic responses in plants. LEDs have a profound effect on plant growth and development and also control key physiological processes such as phototropism, the immigration of chloroplasts, day/night period control and the opening/closing of stomata. Moreover, the synthesis of bioactive compounds and antioxidants on exposure to LED spectrum also provides information on the possible regulation of antioxidative defense genes to protect the cells from oxidative damage. Similarly, LEDs are also seen to escalate the nutrient metabolism in plants and flower initiation, thus improving the quality of the crops as well. However, the complete management of the irradiance and wavelength is the key to maximize the economic efficacy of crop production, quality, and the nutrition potential of plants grown in controlled environments. This review aims to summarize the various advancements made in the area of LED technology in agriculture, focusing on key processes such as morphological changes, photosynthetic activity, nutrient metabolism, antioxidant capacity and flowering in plants. Emphasis is also made on the variation in activities of different LED spectra between different plant species. In addition, research gaps and future perspectives are also discussed of this emerging multidisciplinary field of research and its development.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 246
Author(s):  
Markose Chekol Zewdie ◽  
Michele Moretti ◽  
Daregot Berihun Tenessa ◽  
Zemen Ayalew Ayele ◽  
Jan Nyssen ◽  
...  

In the past decade, to improve crop production and productivity, Ethiopia has embarked on an ambitious irrigation farming expansion program and has introduced new large- and small-scale irrigation initiatives. However, in Ethiopia, poverty remains a challenge, and crop productivity per unit area of land is very low. Literature on the technical efficiency (TE) of large-scale and small-scale irrigation user farmers as compared to the non-user farmers in Ethiopia is also limited. Investigating smallholder farmers’ TE level and its principal determinants is very important to increase crop production and productivity and to improve smallholder farmers’ livelihood and food security. Using 1026 household-level cross-section data, this study adopts a technology flexible stochastic frontier approach to examine agricultural TE of large-scale irrigation users, small-scale irrigation users and non-user farmers in Ethiopia. The results indicate that, due to poor extension services and old-style agronomic practices, the mean TE of farmers is very low (44.33%), implying that there is a wider room for increasing crop production in the study areas through increasing the TE of smallholder farmers without additional investment in novel agricultural technologies. Results also show that large-scale irrigation user farmers (21.05%) are less technically efficient than small-scale irrigation user farmers (60.29%). However, improving irrigation infrastructure shifts the frontier up and has a positive impact on smallholder farmers’ output.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 626
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Sulphur plays crucial roles in plant growth and development, with its functions ranging from being a structural constituent of macro-biomolecules to modulating several physiological processes and tolerance to abiotic stresses. In spite of these numerous sulphur roles being well acknowledged, agriculture has paid scant regard for sulphur nutrition, until only recently. Serious problems related to soil sulphur deficiencies have emerged and the intensification of food, fiber, and animal production is escalating to feed the ever-increasing human population. In the wake of huge demand for high quality cereal and vegetable diets, sulphur can play a key role in augmenting the production, productivity, and quality of crops. Additionally, in light of the emerging problems of soil fertility exhaustion and climate change-exacerbated environmental stresses, sulphur assumes special importance in crop production, particularly under intensively cropped areas. Here, citing several relevant examples, we highlight, in addition to its plant biological and metabolism functions, how sulphur can significantly enhance crop productivity and quality, as well as acclimation to abiotic stresses. By this appraisal, we also aim to stimulate readers interests in crop sulphur research by providing priorities for future pursuance, including bettering our understanding of the molecular processes and dynamics of sulphur availability and utilization in plants, dissecting the role of soil rhizospherical microbes in plant sulphur transformations, enhancing plant phenotyping and diagnosis for nutrient deficiencies, and matching site-specific crop sulphur demands with fertilizer amendments in order to reduce nutrient use inefficiencies in both crop and livestock production systems. This will facilitate the proper utilization of sulphur in crop production and eventually enhance sustainable and environmentally friend food production.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2011 ◽  
Vol 47 (2) ◽  
pp. 267-291 ◽  
Author(s):  
K. P. C. RAO ◽  
W. G. NDEGWA ◽  
K. KIZITO ◽  
A. OYOO

SUMMARYThis study examines farmers’ perceptions of short- and long-term variability in climate, their ability to discern trends in climate and how the perceived trends converge with actual weather observations in five districts of Eastern Province in Kenya where the climate is semi-arid with high intra- and inter-annual variability in rainfall. Field surveys to elicit farmers’ perceptions about climate variability and change were conducted in Machakos, Makueni, Kitui, Mwingi and Mutomo districts. Long-term rainfall records from five meteorological stations within a 10 km radius from the survey locations were obtained from the Kenya Meteorological Department and were analysed to compare with farmers’ observations. Farmers’ responses indicate that they are well aware of the general climate in their location, its variability, the probabilistic nature of the variability and the impacts of this variability on crop production. However, their ability to synthesize the knowledge they have gained from their observations and discern long-term trends in the probabilistic distribution of seasonal conditions is more subjective, mainly due to the compounding interactions between climate and other factors such as soil fertility, soil water and land use change that determine the climate's overall influence on crop productivity. There is a general tendency among the farmers to give greater weight to negative impacts leading to higher risk perception. In relation to long-term changes in the climate, farmer observations in our study that rainfall patterns are changing corroborated well with reported perceptions from other places across the African continent but were not supported by the observed trends in rainfall data from the five study locations. The main implication of our findings is the need to be aware of and account for the risk during the development and promotion of technologies involving significant investments by smallholder farmers and exercise caution in interpreting farmers’ perceptions about long-term climate variability and change.


Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 778
Author(s):  
G. S. A. Castro ◽  
C. A. C. Crusciol ◽  
C. A. Rosolem ◽  
J. C. Calonego ◽  
K. R. Brye

This work aimed to evaluate the effects of crop rotations and soil acidity amelioration on soil physical properties of an Oxisol (Rhodic Ferralsol or Red Ferrosol in the Australian Soil Classification) from October 2006 to September 2011 in Botucatu, SP, Brazil. Treatments consisted of four soybean (Glycine max)–maize (Zea mays)–rice (Oryza sativa) rotations that differed in their off-season crop, either a signal grass (Urochloa ruziziensis) forage crop, a second crop, a cover crop, or fallow. Two acid-neutralising materials, dolomitic lime (effective calcium carbonate equivalent (ECCE) = 90%) and calcium-magnesium silicate (ECCE = 80%), were surface applied to raise the soil’s base saturation to 70%. Selected soil physical characteristics were evaluated at three depths (0–0.1, 0.1–0.2, and 0.2–0.4 m). In the top 0.1 m, soil bulk density was lowest (P < 0.05) and macroporosity and aggregate stability index were greatest (P < 0.05) in the forage crop compared with all other production systems. Also, bulk density was lower (P < 0.05) and macroporosity was greater (P < 0.05) in the acid-neutralising-amended than the unamended control soil. In the 0.1–0.2-m interval, mean weight diameter and mean geometric diameter were greater (P < 0.05) in the forage crop compared with all other production systems. All soil properties evaluated in this study in the 0.2–0.4-m interval were unaffected by production system or soil amendment after five complete cropping cycles. Results of this study demonstrated that certain soil physical properties can be improved in a no-tillage soybean–maize–rice rotation using a forage crop in the off-season and with the addition of acid-neutralising soil amendments. Any soil and crop management practices that improve soil physical properties will likely contribute to sustaining long-term soil and crop productivity in areas with highly weathered, organic matter-depleted, acidic Oxisols.


2020 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Anny Mulyani ◽  
Mamat Haris Suwanda

<p><strong>Abstrak</strong>. Wilayah Nusa Tenggara mempunyai lahan kering beriklim kering seluas 4,9 juta ha dengan curah hujan &lt;2.000 mm/tahun dan bulan kering 5-10 bulan, bersolum tanah dangkal dan berbatu. Sebagian lahan tersebut sudah dimanfaatkan menjadi lahan pertanian terutama jagung, akibatnya produktivitas tanaman jagung rendah dibandingkan potensi genetiknya, yaitu sekitar 2,5 ton/ha di NTT dan 5,3 ton/ha di NTB dibanding dengan potensi genetiknya 9 ton/ha. Sejak tahun 2010-2015, Badan Penelitian dan Pengembangan Pertanian telah mengembangkan inovasi teknologi pengelolaan lahan kering beriklim kering dan berbatu di beberapa kabupaten di NTT dan NTB, meliputi penyediaan sumberdaya air (dam parit, embung, tampung renteng mini, sumur dangkal), pengenalan varietas unggul baru dan budidaya tanaman pangan. Pembelajaran yang diperoleh menunjukkan bahwa penyediaan air menjadi titik ungkit untuk meningkatkan indeks pertanaman dan produktivitas tanaman. Inovasi teknologi yang dibutuhkan petani adalah, mudah diterapkan, biaya murah, dan efisien tenaga kerja mendorong berlanjutnya teknologi tersebut meskipun progam tersebut telah selesai. Pada tahun 2014-2018 telah dilaksanakan kegiatan pertanian konservasi melalui dana hibah barang dan jasa yang dikelola FAO. Prinsip dasar pertanian konservasi terdiri atas 3 pilar, yaitu olah tanah terbatas berupa lubang olah permanen, penutupan permukaan tanah, rotasi/tumpangsari. Lubang tanam tersebut diberi pupuk kandang atau kompos, dan ditanami jagung pada 4 penjuru lubang, dan ditumpangsarikan dengan berbagai kacang-kacangan atau tanaman merambat seperti labu kuning yang berfungsi sebagai penutup tanah dan penghasilan tambahan dari kacang-kacangan berumur pendek. Berdasarkan hasil analisis tanah sebelum dan sesudah implementasi pertanian konservasi menunjukkan bahwa pertanian konservasi dapat meningkatkan kesuburan tanah, retensi air dan meningkatkan produksi tanaman jagung.</p><p> </p><p><strong>Abstract</strong>. The Nusa Tenggara region has upland area with dry climate of 4.9 million ha, less than 2,000 mm annual rainfall, 5-10 dry months, shallow and rocky soils. Some of the land has been used for agricultural development, especially corn, resulting in low corn productivity of around 2.5 tons / ha in NTT and 5.3 tons / ha in NTB as compared to it genetic potential 9 tons /ha. Since 2010-2015, Indonesian Agency of Agricultural Research and Development has developed innovation of soil management technology for upland with dry climates and and rocky soils in several districts in NTT and NTB. The innovation includes the provision of water resources (dam trenches, reservoirs, mini catchments, and shallow wells), introduction of new high yielding varieties and cultivation crops. The lessons learned show that water supply is the initial point to increase cropping index and crop productivity. Technological innovations needed by farmers are easy to implement, low cost, and labor efficient thereby encourage the continuation of the technology even though the program has been completed. In 2014-2018, conservation agriculture activities were carried out through grants of goods and services managed by Food Agriculture Organization (FAO). The basic principle of conservation agriculture consists of 3 pillars, namely limited tillage in the form of permanent planting holes, cover crops, rotation / intercropping. The planting hole is given manure or compost, and planted with corn in 4 corners, and intercropped with various nuts or vines such as pumpkin that serves as a soil cover and additional income from short-lived beans. Based on the results of soil analysis before and after the implementation of conservation agriculture, it shows that conservation agriculture can increase soil fertility, water retention and increase corn crop production.</p>


Sign in / Sign up

Export Citation Format

Share Document