scholarly journals Potensi Penambahan Minyak Ikan Lemuru pada Pakan Komersial terhadap Kandungan Asam Lemak Omega-3 dan Omega-6 Daging Belut Sawah (Monopterus albus) [Potential Addition of lemuru Fish Oil on Commercial feed The Fatty Acids Omega-3 and Omega-6 Ell Meat (Monopterus albus)]

2017 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
Siti Istiqomah ◽  
Mirni Lamid ◽  
Kustiawan Tri Pursetyo

                                                                  AbstrakBelut sawah (Monopterus albus) merupakan komoditas ikan air tawar yang sangat potensial dibudidayakan saat ini. Belut sawah mempunyai kandungan kolesterol yang cukup tinggi yaitu sebesar 185mg/10gram. Batas kolesterol normal yang dibutuhkan tubuh adalah 160-200 mg per hari. Kandungan kolestrol yang tinggi tidak sebanding dengan kandungan asam lemak tak jenuh daging belut sawah. Kandungan asam lemak tak jenuh pada daging belut sawah sangat kecil yakni α-linolenat acid sebesar 0,46%, EPA sebesar 0,22%, DHA sebesar 2,12%, Linolenat acid sebesar 7,42% dan Arakidonoit acid sebesar 1,75%. Salah satu upaya yang dapat dilakukan untuk menigkatkan Omega-3 dan Omega-6 adalah melalui rekayasa pakan, dengan penambahan suplementasi asam lemak yang berasal dari dari organisme laut yang diharapkan kandungan Omega-3 dan Omega-6 dapat meningkat di daging belut sawah. Penelitian ini bertujuan untuk meningkatkan kandungan Omega-3 dan Omega-6 daging belut sawah. Penelitian ini menggunakan metode eksperimental dengan Rancangan Acak lengkap yang terdiri dari lima perlakuan, empat kali ulangan. Analisis data menggunakan uji statistik sidik ragam Analysis of Variant (ANOVA) untuk mengetahui pengaruh perlakuan. Apabila ada perbedaan antar perlakuan dilanjutkan dengan Uji Jarak Berganda Duncan untuk mengetahui perlakuan yang paling baik. Hasil penelitian penambahan minyak ikan lemuru pada pakan komersial menunjukkan perbedaan yang nyata (P<0,05) terhadap kandungan Omega-3 (α-linolenat acid, EPA ,dan DHA) dan kandungan Omega-6 (Linoleat acid dan arakhidonat acid) daging belut sawah. Pemberian minyak ikan lemuru pada dosis 6% dapat meningkatkan kandungan (Omega-3) daging belut sawah α-linolenat acid sebesar 2,75%, EPA sebesar 2,87% dan DHA sebesar 1,29%. Pada dosis 6% minyak ikan lemuru dapat meningkatkan kandungan arakhidonoit acid sebesar 3,77% dan pada dosis 8% dapat meningkatkan kandungan Linoleat acid 4,24% daging belut sawah.                                                                 AbstractEel (Monopterus albus) are mostly bream a potential cultivated currently. Eel has a high cholesterol a month 185mg/10gram. Limit of the normal body needs cholesterol is 160-200 mg per day. The content of high cholesterol are not comparable with the content of unsaturated fatty acids eel meat. The unsaturated fatty acid on meat eel very low at α-linolenat acid of 0,46%, EPA of 0,22%, DHA of 2,12%, Linolenat acid of 7,42% and Arakidonoit acid of 1,75%. One effort can be done to increase omega-3 and omega-6 is through engineering feed, with the addition of supplements fatty acids that originated from marine organisms are expected to Omega-3 content and Omega-6 can increase in the meat eel. Research is aimed to increase Omega-3 content and Omega-6 flesh of eel. This research uses experimental methods to a draft random complete consisting of five treatment, four times remedial. Analysis data using statistical tests fingerprint variety of analysis of variant (ANOVA) to know the influence of treatment. If there are the differences between treatment continued by test distance multiple Duncan to know the best treatment. Research results in additional fish oil lemuru on commercial feed showing significant differences (p<0,05) against the omega-3 (α-linolenat acid, EPA and DHA) and the omega-6 (linoleic acid and arakhidonat acid) of eel. The doses 6% lemuru fish oil can improve the (Omega-3) of eel α-linolenat acid of 2,75%, EPA of 2,87% and DHA 1,29%. On the content doses 6% fish oil lemuru can improve Arachidonic acid of 3,77% and on content doses, 8 % can improve linoleic acid of 4,24 % meat eel.

2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


2021 ◽  
Vol 50 (8) ◽  
pp. 2271-2282
Author(s):  
Wawan Kosasih ◽  
Tina Rosmalina R. ◽  
Chandra Risdian ◽  
Endang Saepudin ◽  
Sri Priatni Sri Priatni

Production of omega-3 fatty acids from lemuru fish by-products was studied by enzymatic hydrolysis using a lipase enzyme in one liter of the batch reactor. The hydrolysis temperature of fish oil was set at 45 to 55 ℃ for 0 to 24 h, whereas agitation from 50 to 150 rpm. RSM-Box Bhenken was used to study the effect of these parameters on omega-3 (EPA, docosahexaenoic acid (DHA), and α-linolenic acid (ALA)) content. The % free fatty acid (FFA), acid index, peroxide index, iodine index, and saponification index of lemuru fish oil was 0.925, 2.52, 42.5, 97.28, and 160.11%, respectively. GC-MS analysis results showed that unsaturated fatty acids content (62.34%), which are consisted of omega-3 (EPA, DHA, and ALA), omega-6 and omega-9, was much higher than saturated acids (12.97%). The experiment data showed that the highest EPA (1.221%) and DHA (0.312%) content were reached at 50 ℃ and 24 h with 150 rpm of agitation. However, through the RSM-Box Bhenken analysis and 3D surface plot, it was suggested that the optimum condition was obtained at 45 ℃ and 24 h with 150 rpm of agitation with the content of EPA, DHA, and ALA were 1.709, 0.49, and 1.237%, respectively.


2019 ◽  
Vol 2 (1) ◽  
pp. 37-44
Author(s):  
Maruba Pandiangan ◽  
Jamaran Kaban ◽  
Basuki Wirjosentono ◽  
Jansen Silalahi

Penelitian ini bertujuan untuk mengetahui komponen asam lemak omega-3 dan omega-6 pada minyak ikan mas. Penelitian ini dilakukan di Laboratorium Pengolahan Pangan Fakultas Pertanian Universitas Katolik Santo Thomas, Medan. Pelaksanaan penelitian ini dilakukan pada bulan Agustus 2016 hingga Oktober 2016. Minyak ikan mas diperoleh dengan menggunakan proses rendering kering. Dari uji sifat fisika kimia diperoleh semakin besar nilai angka asam maka semakin rendah kualitas minyaknya, semakin kecil angka peroksida maka kualitas minyak semakin baik, bilangan iod yang tinggi menunjukkan bahwa minyak tersebut mengandung asam lemak tak jenuh yang banyak, semakin besar bilangan penyabunan yang dihasilkan maka minyak memiliki berat molekul yang lebih rendah. Hasil analisis minyak ikan dengan GC-MS didapat komposisi asam lemak sebagai berikut: asam lemak jenuh sebanyak 27,54%, asam lemak tidak jenuh tunggal sebanyak 43,92%, asam lemak tidak jenuh jamak sebanyak 21,25%. Asam lemak omega 3 sebanyak 2,83% yang terdiri dari asam linolenat 1,49%, asam eikosatrienoat 0,87%, asam eikosapentaenoat 0,11%, asam dekosaheksaenoat 0,36%, dan omega 6 sebanyak 17,36% yang terdiri dari asam linoleat 16,44%, asam arakhidonat 0,92%, Nilai gizi minyak ikan mas belum memenuhi komposisi ideal nilai gizi minyak ikan, dimana perbandingan ketiga jenis asam lemak belum memenuhi perbandingan 33,33% dan total penyimpangan sangat tinggi.   This study aimed to determine the components of omega-3 and omega-6 fatty acids in carp oil. This research was conducted at the Food Processing Laboratory of the Faculty of Agriculture, Santo Thomas Catholic University, Medan. The implementation of this research was conducted from August 2016 to October 2016. Carp oil was obtained using a dry rendering process. From the test of physical chemical properties obtained, the greater the value of the acid number, the lower the quality of the oil. It also showed that the smaller the peroxide number, the better the quality of the oil. The higher iodine number indicated that it contained many unsaturated fatty acids; therefore, the greater the saponification number the oil resulted, the lower molecular weight it obtained. The results of analysis of fish oil with GC-MS, showed the following fatty acid compositions: 27.54% saturated fatty acids, 43.92% monounsaturated fatty acids, and 21.25% plural unsaturated fatty acids. Omega-3 fatty acids were 2.83% consisting of 1.49% linolenic acid, 0.87% eicosapenoic acid, 0.11% eicosapentaenoic acid, 0.36% decosahexaenoic acid. It also resulted 17.36% omega-6 consisted of from linoleic acid 16.44%, arachidonic acid 0.92%. The nutritional value of goldfish oil did not meet the ideal composition of nutritional value of fish oil, where the ratio of the three types of fatty acids had not met the ratio of 33.33% and the total deviation was very high.


2010 ◽  
Vol 39 (11) ◽  
pp. 2502-2511 ◽  
Author(s):  
Luís Fernando Glasenapp de Menezes ◽  
Gilberto Vilmar Kozloski ◽  
João Restle ◽  
Ivan Luiz Brondani ◽  
Raul Dirceu Pazdiora ◽  
...  

It was evaluated in this study the effect of the type of the diet on duodenal flow of long-chain fatty acids in steers. The tested diets were the following: conventional (feedlot diet composed of 60% corn silage and 40% of concentrate); winter forage silage - rye grass (Lolium multiflorum, Lam); or tropical forage silage - association of millet (Pennisetum americanum, Leeke + alexander grass, Brachiaria plantaginea). Six Charolais × Nellore crossbred steers with cannulas in duodenum were used in a 3 × 3 double Latin square. Dry material intake was similar among the groups (mean of 4,037 g/day), but the intake of total fatty acids and saturated fatty acids were higher in the group fed tropical pasture silage. On the other hand, the animals which received the conventional diet consumed higher quantity of unsaturated fatty acids. Tropical pasture silage provided higher consumption of vacenic acid (C18:1 t-11) and the winter forage silage offered higher consumption of conjugated linoleic acid. The intake of omega-6 fatty acids was higher in the group fed conventional diet and for omega-3, intake was higher in the group fed tropical pasture diet. The total fatty acid flow in the duodenum was not affected by the diets, but in all treatments it was higher than the consumed one. The animals fed diet with concentrate show the greatest changes on the profile of fatty acids during the ruminal fermentation. Conventional diets provide the highest intake of unsaturated fatty acids and the highest availability of vacenic acid in the small intestine, but they do not increase the supply of intestinal conjugated linoleic acid.


2019 ◽  
Vol 20 (2) ◽  
pp. 120-131
Author(s):  
Settings Anang Suhardianto ◽  
Ariyanti Hartari

This study aims to determine the effect of stocking density on the nutrient content of catfish that is maintained with biofloc technology. Nutrients observed: 1) water content, 2) protein, 3) carbohydrates, 4) total fat, 5) saturated fatty acids / SFA, 6) monounsaturated fatty acids/ MUFA, 7) plural unsaturated fatty acids / PUFA , 8) omega-3, 9) omega-6, and 10) omega 9. Statistical tests on the 10 variables showed that stocking density did not have a significant effect on the 10 variables at a 5% confidence interval. Stocking density of treatment is 1000 heads/pond (T1), 2000 heads/pond (T2), 3000 heads/pond (T3), with a pond size of 2.0 m x height 1.0 m. Research results: 1. The average water content is 69.40–71.47% and the highest T3. 2. The protein content is 14.70-15.90%, the highest T2. 3. Carbohydrate content of 5.16-5.50%, the highest T2. 4. The average total fat content of 6.73-7.78%, the highest T1. 5. SFA content is around 43%, PUFA around 23%, and MUFA around 32%. 6. The highest omega-3 content is T3, then T1, and T2. Omega-6 and 9 sequence contents are T1, T2, and T3. It was concluded, the treatment of biofloc catfish stocking densities at a 5% confidence interval did not have a significant effect on the specified nutrient content. Penelitian ini bertujuan untuk menentukan pengaruh padat tebar terhadap kandungan zat gizi ikan lele yang dipelihara dengan teknologi bioflok. Zat gizi yang diamati: 1) kandungan air, 2) protein, 3) karbohidrat, 4) lemak total, 5) asam lemak jenuh/SFA, 6) asam lemak tak jenuh tunggal/MUFA, 7) asam lemak tak jenuh jamak/PUFA, 8) omega-3, 9) omega 6, dan 10) omega 9. Uji statistik terhadap ke-10 variabel menunjukkan padat tebar tidak memberikan pengaruh nyata terhadap ke-10 variabel pada selang kepercayaan 5%.  Padat tebar perlakuan adalah 1000 ekor/kolam (T1),  2000 ekor/kolam (T2), 3000 ekor/kolam (T3), dengan ukuran kolam diameter 2,0 m x tinggi 1,0 m. Hasil penelitian: 1. Rata-rata kandungan air 69,40–71,47% dan T3 tertinggi. 2. Kandungan protein 14,70–15,90%, T2 tertinggi. 3. Kandungan karbohidrat 5,16–5,50%, T2 tertinggi. 4. Rata-rata kandungan lemak total 6,73–7,98%, T1 tertinggi. 5. Kandungan SFA sekitar 43%, PUFA sekitar 23%, dan MUFA sekitar 32%. 6. Kandungan omega-3 tertinggi T3, kemudian T1, dan T2. Omega-6 dan 9 urutan kandungannya T1, T2, dan T3.  Disimpulkan, perlakuan padat tebar lele bioflok pada selang kepercayaan 5% tidak memberikan pengaruh yang nyata terhadap kandungan zat gizi yang ditentukan.


2018 ◽  
Vol 73 ◽  
pp. 06008 ◽  
Author(s):  
Amalia Rizka ◽  
Wahyuningsih Wahyuningsih ◽  
Broto RTD Wisnu ◽  
Endy Yulianto Mohamad ◽  
Rama Devara Hafizh ◽  
...  

Structured lipid containing Medium Chain of Fatty Acid (MCFA) at outer position and Poly-Unsaturated Fatty Acids (PUFA) at sn-2 position has nutritional value and excellent absorption. In this research, structured lipids was synthesized directly through enzymatic acidolysis between fish oil and lauric acid and catalyzed by specific lipase from immobilized 1.3 Candida rugose. The kinetics of enzymatic transesterification reactions catalyzed by immobilized Candida rugose was studied. To obtain the optimal condition, the factor substrate ratio of fish oil : lauric acid and reaction time were investigated. Simple mathematical model for DAG synthesis through transesterification mechanisms have been developed. The results showed that the parameters obtained had a good sensitivity. It was found that the kinetic model well describes the behavior of the reaction as the influence of the initial ratio of reactants.


2020 ◽  
Vol 9 (3) ◽  
pp. 232
Author(s):  
Januar Hadi Prasetyo ◽  
Agustono Agustono ◽  
Widya Paramitha Lokapirnasari

Omega-3 fatty acids (Alpha-linolenic acid) and omega-6 fatty acids (Linoleic acid) are a group of essential fatty acids. Essential fatty acids are fatty acids that cannot be synthesized by the body so that must be supplied from the diet. One of the sources of essential fatty acids is derived from fish oil. This study aims to determine the effect of Crude Fish Oil (CFO) in the feed to EPA and DHA content in penaeid shrimp meat. The research method used was a completely randomized design. The treatments used are the varying content of Crude Fish Oil (CFO), which are P0 (0%), P1 (2%), P2 (4%), P3 (6%), and P4 (8%). The results of the study showed significant differences (p <0.05) on the content of EPA and DHA in penaeid shrimp meat. The highest content of EPA and DHA found in P4 treatment (8%) and the lowest at P0 treatment (0%). The use of CFO in penaeid shrimp feed need further study related to the growth of shrimps and prawns reproductive cycle to increase the productivity of penaeid shrimp. CFO on feed should be used at a dose of 6%.


2006 ◽  
Vol 95 (6) ◽  
pp. 1199-1211 ◽  
Author(s):  
I. Wąsowska ◽  
M. R. G. Maia ◽  
K. M. Niedźwiedzka ◽  
M. Czauderna ◽  
J. M. C. Ramalho Ribeiro ◽  
...  

Dietarycis-9,trans-11-conjugated linoleic acid (CLA) is generally thought to be beneficial for human health. Fish oil added to ruminant diets increases the CLA concentration of milk and meat, an increase thought to arise from alterations in ruminal biohydrogenation of unsaturated fatty acids. To investigate the mechanism for this effect,in vitroincubations were carried out with ruminal digesta and the main biohydrogenating ruminal bacterium,Butyrivibrio fibrisolvens. Linoleic acid (LA) or α-linolenic acid (LNA) was incubated (1·67g/l) with strained ruminal digesta from sheep receiving a 50:50 grass hay–concentrate ration. Adding fish oil (up to 4·17g/l) tended to decrease the initial rate of LA (P=0·025) and LNA (P=0·137) disappearance, decreased (P<0·05) the transient accumulation of conjugated isomers of both fatty acids, and increased (P<0·05) the accumulation oftrans-11-18:1. Concentrations of EPA (20:5n-3) or DHA (22:6n-3), the major fatty acids in fish oil, were low (100mg/l or less) after incubation of fish oil with ruminal digesta. Addition of EPA or DHA (50mg/l) to pure cultures inhibited the growth and isomerase activity ofB. fibrisolvens, while fish oil had no effect. In contrast, similar concentrations of EPA and DHA had no effect on biohydrogenation of LA by mixed digesta, while the addition of LA prevented metabolism of EPA and DHA. Neither EPA nor DHA was metabolised byB. fibrisolvensin pure culture. Thus, fish oil inhibits ruminal biohydrogenation by a mechanism which can be interpreted partly, but not entirely, in terms of its effects onB. fibrisolvens.


Sign in / Sign up

Export Citation Format

Share Document