scholarly journals Phytopharmacological Evaluation of Alcoholic Extract of Berberis aristata Leaf in the Treatment of Gastric Ulcer

2020 ◽  
Vol 13 (1) ◽  
pp. 1-5
Author(s):  
Ratnaker Singh ◽  
Y. Trilochana

For over a century, peptic ulcer has been one of the most common gastrointestinal tract (GIT) disorder. There are number of drugs are now available for treatment. Drugs of herbal origin reduce the offensive factors and have proved to be safe, clinically effective, relatively less expensive, globally competitive, and with better patient tolerance.This study was performed to assess the anti-ulcer activity on different parts of B.aristata. Apart from that, acute toxicity, qualitative chemical analysis, total phenolic content (TPC), total flavonoid content(TFC) and in vitro antioxidant activities were evaluated. The potentially active plant part was selected for screening as gastro protective, in vivo antioxidant and antisecretory activities in ulcerated rats.The 50% ethanolic extract of B. aristata were subjected to preliminary phytochemical screening, estimation of TFC and TPC. The crude extract from the leaves of B. aristata gave best antiulcer activity among flower and stem. In acute toxicity studies, the administration of the crude extract of B. aristata leaves did not reveal any adverse effects or toxicity in rats at fourteen days observations.The results of these studies have shown that ethylexract of B.aristata leaf (EEBAL) produced a significant dose dependent ulcerprotective, antioxidant and antisecretory activity by blocking the activity of proton pump, protecting from antioxidants produced during stress induced ulcer and by enhancing glycoprotein levels.

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5380
Author(s):  
Aymen Souid ◽  
Clara Maria Della Croce ◽  
Stefania Frassinetti ◽  
Morena Gabriele ◽  
Luisa Pozzo ◽  
...  

Aromatic halophytes represent an exceptional source of natural bioactive compounds for the food industry. Crithmum maritimum L., also known as sea fennel, is a halophyte plant colonizing cliffs and coastal dunes along Mediterranean and Atlantic coasts. It is well known to produce essential oils and polyphenols endowed with antioxidant and biological effects. The present work reports the phytochemical profile, as well as antioxidant, antimicrobial and antimutagenic properties of C. maritimum leaf hydro-alcoholic extract. From LC-ESI-MS analysis, eighteen phenolic compounds were depicted in sea fennel extract and the amount of total phenolic content exceeds 3% DW. Accordingly, C. maritimum extract showed strong antioxidant activities, as evidenced by in vitro (DPPH, ORAC, FRAP) and ex vivo (CAA-RBC and hemolysis) assays. An important antimicrobial activity against pathogenic strains was found as well as a strong capacity to inhibit Staphylococcus aureus (ATCC 35556) biofilm formation. Sea fennel extracts showed a significant decrease of mutagenesis induced by hydrogen peroxide (H2O2) and menadione (ME) in Saccharomyces cerevisiae D7 strain. In conclusion, our results show that C. maritimum is an exceptional source of bioactive components and exert beneficial effects against oxidative or mutagenic mechanisms, and pathogenic bacteria, making it a potential functional food.


2017 ◽  
Vol 208 ◽  
pp. 105-116 ◽  
Author(s):  
Sana Aouachria ◽  
Sabah Boumerfeg ◽  
Abderrahim Benslama ◽  
Faycel Benbacha ◽  
Thoraya Guemmez ◽  
...  

2009 ◽  
Vol 6 (2) ◽  
pp. 227-231 ◽  
Author(s):  
S. A. Adesegun ◽  
A. Fajana ◽  
C. I. Orabueze ◽  
H. A. B. Coker

The antioxidant activities of crude extract ofPhaulopsis fascisepalaleaf were evaluated and compared with α-tocopherol and BHT as synthetic antioxidants and ascorbic acid as natural-based antioxidant.In vitro, we studied its antioxidative activities, radical-scavenging effects, Fe2+-chelating ability and reducing power. The total phenolic content was determined and expressed in gallic acid equivalent. The extract showed variable activities in all of thesein vitrotests. The antioxidant effect ofP. fascisepalawas strongly dose dependent, increased with increasing leaf extract dose and then leveled off with further increase in extract dose. Compared to other antioxidants used in the study, α-Tocopherol, ascorbic acid and BHT,P. fascisepalaleaf extract showed less scavenging effect on α,α,-diphenyl-β-picrylhydrazyl (DPPH) radical and less reducing power on Fe3+/ferricyanide complex but better Fe2+-chelating ability. These results revealed thein vitroantioxidant activity ofP.fascisepala.Further investigations are necessary to verify these activitiesin vivo.


Author(s):  
D. Amirtham ◽  
J. Aswini Nivedida ◽  
K. Dhivya ◽  
S. Ganapathy ◽  
C. Indurani

Green leafy vegetables are the most underexploited class of vegetables despite high nutritional value. The current study has been focused on the evaluation of anti-oxidant status of fresh and dehydrated under- utilized green leafy vegetable namely Mukia maderaspatana (L.) (Family: Cucurbitaceae), an indigenous plant; traditionally it is used as an ingredient of various cocktail preparations for the management of severe inflammatory disorders in Indian system of medicine. The total phenolic content (TPC), total flavonoid content (TFC) and total antioxidant activities were evaluated for the ethanolic extract of leaves to assess the in vitro antioxidant activities. The results showed that there exist a linear correlation between polyphenol content and antioxidant property. The ethanolic extract of dehydrated Mukia leaves showed the highest phenolic content (269.34 ± 0.78mg GAE/g), and total antioxidant activity (543±46 µmol Trolox/100 g). HPTLC analysis has revealed the presence of significant quantity of Quercitin (26.52%), an important flavonoid of tremendous antioxidant, anticancer and ant inflammatory properties in both the fresh and dehydrated leaves which might be the chief bioactive principle in Mukia.


2016 ◽  
Vol 11 (9) ◽  
pp. 1934578X1601100
Author(s):  
Pei-Ling Yen ◽  
Sen-Sung Cheng ◽  
Chia-Cheng Wei ◽  
Huan-You Lin ◽  
Vivian Hsiu-Chuan Liao ◽  
...  

The in vitro and in vivo antioxidant activities and its potential to protect against amyloid-β toxicity of essential oils from Zelkova serrata (Thunb.) Makino were investigated in the model organism Caenorhabditis elegans. The results revealed that the essential oil of Z. serrata heartwood exhibited great radical scavenging activities and high total phenolic content. In vivo assays showed significant inhibition of oxidative damage in wild-type C. elegans under juglone-induced oxidative stress and heat shock. Based on results from both in vitro and in vivo assays, the major compound in essential oil of heartwood, (-)-(1 S, 4 S)-7-hydroxycalamenene (1 S, 4 S-7HC), may contribute significantly to the observed antioxidant activity. Further evidence showed that 1 S, 4 S-7HC significantly delayed the paralysis phenotype in amyloid beta-expressing transgenic C. elegans. These findings suggest that 1 S, 4 S-7HC from the essential oil of Z. serrata heartwood has potential as a source for antioxidant or Alzheimer's disease treatment.


2017 ◽  
Vol 12 (4) ◽  
pp. 384
Author(s):  
Irfan Hamid ◽  
Khalid Hussain Janbaz

<p class="Abstract">The study was conducted to provide the ethnopharmacological bases of the crude extract of seed pods of <em>Ceratonia siliqua</em> in the gastrointestinal spasm, diarrhea and emesis. In segregated rabbit jejunum, it showed dose-dependent (0.01-10 mg/mL) relaxation of spontaneous as well as carbachol (1 µM)-induced contraction. Pre-treatment of segregated rat ileum with <em>C. siliqua</em>, significantly (p&lt;0.0001) suppressed the carbachol (1 µM)-induced contraction similar to atropine (1 µM). These results indicated that <em>C. siliqua</em> possesses spasmolytic activity through possible blockage of muscarinic receptor in jejunum preparations. Furthermore, the crude extract inhibited the castor oil-induced diarrhea, charcoal meal propulsion in mice and copper sulfate-induced retches in chicks in a dose-dependent manner (100, 200, 300 mg/kg). These in vitro and in vivo results indicate that <em>C. siliqua</em> possesses the spasmolytic and antidiarrheal activities mediated possibly through blockage of muscarinic receptors. Thus, this study provides a rationale for its folkloric use.</p><p><strong>Video Clip of Methodology</strong>:</p><p>12 min 42 sec   <a href="https://www.youtube.com/v/BQGWdIZqpsY">Full Screen</a>   <a href="https://www.youtube.com/watch?v=BQGWdIZqpsY">Alternate</a></p>


Author(s):  
Popi Patilaya ◽  
Dadang Irfan Husori ◽  
Imam Bagus Sumantri ◽  
Simon Sihombing

 Objective: Picria fel-terrae belongs to family Linderniaceae is also known as Pugun tano by Indonesian people. The ethanolic extract of plant leaves has several potential pharmacological activities including antidiabetic, anthelmintic, and antioxidant. However, the toxicity of the plant extract is rarely explored. This work was to investigate toxicity of the leaf ethanolic extract of P. fel-terrae on Artemia salina and male mice.Methods: Acute toxicity of the plant extract was studied by in vitro and in vivo methods. In vitro study was carried out by exposing nauplii to the plant extract at concentrations of 10, 100, 200, 500, and 1000 μg/ml for 48 h. In vivo study was performed on male mice that divided into four groups. Groups I, II, III, and IV were treated with sodium carboxymethyl cellulose 0.5%, the ethanolic extract of plant leaves at doses of 1000, 2000, and 5000 mg/kg bw, respectively. The animal toxic symptoms were observed every day for 14 days. On day 15, the blood of mice was collected to measure alanine aminotransferase, aspartate aminotransferase, and creatinine levels. The effects of plant extract on vital animal organs such as heart, liver, and kidney were also studied. Statistical analysis of data was performed using analysis of variance and followed by Tukey post hoc.Results: The results showed that the leaf ethanolic extract of P. fel-terrae to have weakly toxicity on A. salina with the LC50 of 768.07 μg/ml. At in vivo studies, the toxic symptoms of mice were not identified during experiment with all doses of the plant extract for 14 days. In addition, aspartate aminotransferase and creatinine levels were no significantly different between control and all treatment groups (p>0.05). However, alanine aminotransferase level changed when mice were exposed by the plant extract at the doses of 2.000 and 5.000 mg/kg bw. Although the mice were not dead during experiment, the animal organs such as heart, liver, and kidney were histologically changed.Conclusion: This study suggests that the ethanolic extract of P. fel-terrae leaves has weakly toxicity on A. salina and causes histological changes on male mice organs at the high doses.


2020 ◽  
Author(s):  
Gedefaw Getnet Amare ◽  
Tadesse Awgichew ◽  
Solomon Ahmed ◽  
Zemene Demelash Kifle

Abstract Background: Nature has gifted a variety of plants having potential effect against plasmodium parasites. The present study was aimed to determine in vitro and in vivo antimalarial activity of the leaf latex of Aloe weloensis.Methods: In vitro antimalarial activity of the leaf latex of A. weloensis was determined against 3D7 strain of P. falciparum. Antimalarial activity of the three doses the latex was evaluated in 4 day-suppressive and curative models against P. berghei infected mice. Antioxidant activity of the leaf latex of A. weloensis was assessed in 2,2- diphenyl 1- picrylhydrazine assay model. Results: Antioxidant activity of the latex was concentration dependent; the strongest inhibition was measured at 400 μg/mL (73.54%). The leaf latex of A. weloensis was demonstrated inhibitory activity against 3D7 malarial strain (IC50 = 9.14 μg/ml). Suppressive and curative effect of the latex was found to be dose dependent. Parasitemia reduction was significant (200 mg/kg, p<0.01, 400 and ,600 mg/kg, p<0.001) in 4-day suppressive test compared to vehicle control. Parasitemia level of the mice treated with 200, 400 and 600 mg/kg doses of the latex significantly (p<0.001) reduced with suppression of 36%, 58% and 64% respectively in curative test. Administration of the leaf latex of A. weloensis significantly (p<0.01) improved mean survival time, pack cell volume, rectal temperature and body weight of P. berghei infected mice. Conclusion: The finding showed that the leaf latex of Aloe weloensis endowed prominent antimalarial and antioxidant activities. The result can serve as a step towards the development of safe and effective herbal therapy against plasmodium parasites.


2016 ◽  
Author(s):  
Mansour Sobeh ◽  
Esraa A ElHawary ◽  
Herbenya Peixoto ◽  
Rola M Labib ◽  
Heba Handoussa ◽  
...  

Background: Schotia brachypetala Sond. (Fabaceae) is an endemic tree of Southern Africa whose phytochemistry and pharmacology were slightly studied.The present work aimed at profiling the major phenolics compounds present in the hydro-alcoholic extract from S. brachypetala leaves (SBE) using LC/HRESI/MS/MS and NMR and prove their antioxidant capabilities using novel methods. Methods: In vitro assays; DPPH, TEAC persulfate decolorizing kinetic and FRAP assays, and in vivo assays: Caenorhabditis elegans strains maintenance, Intracellular ROS in C. elegans, Survival assay, GFP expression and Subcellular DAF-16 localization were employed to evaluate the antioxidant activity. Results: More than forty polyphenols ,including flavonoid glycosides, galloylated flavonoid glycosides, isoflavones, dihydrochalcones, procyanidins, anthocyanins, hydroxybenzoic acid derivatives, hydrolysable tannins, and traces of methylated and acetylated flavonoid derivatives were identified. Three compounds were isolated and identified from the genus Schotia for the first time, namely gallic acid, myricetin-3-O-α-L-1C4-rhamnoside and quercetin-3-O-L-1C4-rhamnoside.The tested extract was able to protect the worms against juglone induced oxidative stress and attenuate the reactive oxygen species (ROS) accumulation. SBE was also able to attenuate the levels of heat shock protein (HSP) expression. Discussion: A pronounced antioxidant activity in vivo, which can be attributed to its ability to promote the nuclear translocation of DAF-16/FOXO, the main transcription factor regulating the expression of stress response genes. The remarkable antioxidant activity in vitro and in vivo correlates to SBE rich phenolic profile.


2020 ◽  
Vol 13 (2) ◽  
pp. 166-180
Author(s):  
Bashige Chiribagula V ◽  
Bakari Amuri S ◽  
Okusa Ndjolo Philippe ◽  
Kahumba Byanga J ◽  
Duez P ◽  
...  

Dialium angolense is used in Bagira for its various medicinal properties particularly in the management of infectious diseases. In this study, the methanol and aqueous extracts of leaves and fruits were evaluated for their in vitro antioxidant and antimicrobial properties and their in vivo toxicity on Cavia porcellus. The major phytochemical classes of extracts were screened using standard in-tube reactions. The antimicrobial study was tested on Candida albicans, Escherichia coli, Salmonella typhi, Staphylococcus aureus and Streptococcus pneumoniae using agar well diffusion and dilution methods, while the antioxidant activity was evaluated by a DPPH assay. For the acute toxicity study, animals (6/group) were orally given in a single dose 5000, 1000 or 15000 mg of extract/kg body weight (BW) then observed for 14 days. In sub-acute toxicity assays, 150 or 300 mg/kg BW/day were orally given, and animals observed for 28 days. Total phenolics and total flavonoids contents ranged 1.19 to 1.61 mg GAE.g-1 and 0.45 to 1.01 mg QEg-1, respectively. The extracts presented antioxidant activity with IC50 ranging 4.9 to 6.9 µg/mL. The minimal inhibitory concentration (MIC) on tested strains ranged from 1.9 to 500 µg/mL with the aqueous extract of fruits as a most active extract: MIC=1.9 µg/mL on E. coli and C. albicans. No signs of toxicity were noted during the acute and sub-acute toxicity assessments, suggesting a maximal tolerate doses (MDT) and LD50 > 15000 mg/kg BW. This study highlights the antioxidant and antimicrobial activities of Dialium angolense and suggests that further studies be directed towards the isolation of active compounds.


Sign in / Sign up

Export Citation Format

Share Document