scholarly journals A Mini-Review on the Phytochemistry and Biological Activities of Selected Apocynaceae Plants

Author(s):  
Abiche Ekalu ◽  
Rachael Gbekele-Oluwa Ayo ◽  
Habila D. James ◽  
Ibrahim Hamisu

This review aims at studying the phytochemistry and biological activities of some selected Apocynaceae plants. Eleven members of this family were reviewed for their phytochemistry and biological activities. Interestingly, the commonly isolated compounds reported from Mondia whitei (Hook.f.) Skeels, Secondatia floribunda A. DC, Carissa carandas, Tabernaemontana divaricate, Nerium oleander, Wrightia tinctoria, T. divaricate, Alstonia scholaris, Carrisa spinarum Linn, Thevetia peruviana and Caralluma lasiantha were triterpenoids, flavonoids, phytosterols, cardiac glycosides and lignans. All of them exhibited remarkable biological activities, mostly similar to each other. This review provides a detailed insight into the pharmacological activities of these selected members of this family.

2019 ◽  
Vol 8 (4) ◽  
pp. 269-273 ◽  
Author(s):  
Abiche Ekalu ◽  
Rachael Gbekele-Oluwa Ayo ◽  
James Dama Habila ◽  
Ibrahim Hamisu

This review aims at studying the phytochemistry and biological activities of some selected Apocynaceae plants. Eleven members of this family were reviewed for their phytochemistry and biological activities. Interestingly, the commonly isolated compounds reported from Mondia whitei (Hook.f.) Skeels, Secondatia floribunda A. DC, Carissa carandas, Tabernaemontana divaricate, Nerium oleander, Wrightia tinctoria, Tabernaemontana divaricate, Alstonia scholaris, Carrisa spinarum Linn, Thevetia peruviana and Caralluma lasiantha were triterpenoids, flavonoids, phytosterols, cardiac glycosides and lignans. All of them exhibited remarkable biological activities, mostly similar to each other. This review provides a detailed insight into the pharmacological activities of these selected members of this family.


Author(s):  
ALFRED MAROYI

Lannea schimperi is a well-known fruit tree and medicinal plant in tropical Africa. The current study critically reviewed the botany, medicinal uses, phytochemistry, and pharmacological activities of L. schimperi. Literature on botany, medicinal uses, phytochemical and biological activities of L. schimperi were collected from multiple internet sources including Elsevier, Google Scholar, SciFinder, Web of Science, PubMed, BMC, ScienceDirect, and Scopus. Complementary information was gathered from pre-electronic sources such as books, book chapters, theses, scientific reports, and journal articles obtained from the University Library. This study revealed that the species is used as a source of fiber, edible fruits, and herbal medicine. Phytochemical compounds identified from the species include cyclohexenones, cardanols, alkaloids, anthocyanins, anthracene glycosides, carbohydrates, cardiac glycosides, carotenoids, condensed tannins, coumarins, flavonoids, phenolic glycosides, phenols, polyoses, polyuronoids, reducing sugars, saponins, steroids, tannins, triterpenoids, and volatile compounds. Pharmacological research revealed that extracts and phytochemical constituents isolated from L. schimperi have anesthetic, antibacterial, antifungal, anticoccidial, anti-inflammatory, antinociceptive, antioxidant, anti-trypanosoma, antiulcerogenic, cytotoxicity, and toxicity activities. L. schimperi should be subjected to detailed phytochemical, pharmacological, and toxicological evaluations aimed at correlating its medicinal uses with its phytochemistry and pharmacological activities of the species.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Huang ◽  
Gen Li ◽  
Chong Hong ◽  
Xia Zheng ◽  
Haiyang Yu ◽  
...  

Steroidal alkaloids contain both steroidal and alkaloid properties in terms of chemical properties and pharmacological activities. Due to outstanding biological activities such as alkaloids and similar pharmacological effects to other steroids, steroidal alkaloids have received special attention in anticancer activity recently. Substituted groups in chemical structure play markedly important roles in biological activities. Therefore, the effective way to obtain lead compounds quickly is structural modification, which is guided by structure–activity relationships (SARs). This review presents the SAR of steroidal alkaloids and anticancer, including pregnane alkaloids, cyclopregnane alkaloids, cholestane alkaloids, C-nor-D-homosteroidal alkaloids, and bis-steroidal pyrazine. A summary of SAR can powerfully help to design and synthesize more lead compounds.


2020 ◽  
Vol 20 (4) ◽  
pp. 308-330 ◽  
Author(s):  
Navjot Singh Sethi ◽  
Deo Nandan Prasad ◽  
Rajesh Kumar Singh

2,4-Thiazolidinedione (2,4-TZD) is a versatile pharmacophore, a privileged scaffold, and a remarkable sulphur-containing heterocyclic compound with diverse pharmacological activities. The multifarious biological activities, due to different mechanisms of action, low cost, and easy availability of 2,4-TZD impressed medicinal chemists to integrate this moiety to develop various lead compounds with diverse therapeutic actions. This resulted in the swift development in the last decade for generating different new potential molecules bearing 2,4-TZD. In this review, the authors attempt to shape and present the latest investigations (2012 onwards) going on in generating promising 2,4-TZD containing lead compounds. The data has been collected and analyzed to develop the structure-activity relationship (SAR). The SAR and active pharmacophores of various leads accountable for antidiabetic, anticancer, antimicrobial, and antioxidant activities have also been illustrated. This review also highlighted some of the important chemical synthetic routes for the preparation of various 2,4-TZD derivatives. This review will definitely serve as a useful source of structural information to medicinal chemists and may be utilized for the strategic design of potent 2,4-TZD derivatives in the future.


Author(s):  
Saabiya Farooqui ◽  
Tulika Tyagi

Nerium oleander is an important medicinal plant in Indian folk medicine. It is a potentially lethal plant in many cases and poisoning is reported in tropical and subtropical parts of the world as well as a number of suicidal cases are also prevalent in South Asian countries, especially in India and Sri Lanka. All parts of the plant are toxic and contain a variety of cardiac glycosides which includes neriin, oleandrin, cardenolides, gentiobiosyl and odoroside. This plant species also produce secondary metabolites such as alkaloids, flavonoids and steroids which have pharmacological applications. The important pharmacological activities are antibacterial, anthelmintic, anti-inflammatory, hepatoprotective, immunopotential, anti-pyretic, antioxidant, antifungal, anticancer and anti-HIV activity. This review describes the evidence-based information regarding pharmacological activity as well as phytochemicals of this plant.


2017 ◽  
Vol 3 (2) ◽  
pp. 294-302
Author(s):  
Reshu Virmani ◽  
Tarun Virmani ◽  
Charan Singh ◽  
Geeta Sorout ◽  
Jyoti Gupta

Carissa carandas (F. Apocynaceae) is an important fruit commonly known as Karonda ‘Christ’s thorn’ which grows wild in bushes. Carissa carandas is a useful food and medicinal plant of India, found to be widely distributed throughout subtropical and topical regions. The plant has been used as a traditional medicinal plant over thousands of years in the Ayurvedic, Unani, and Homoeopathic system of medicine. The major bioactive constituents, which impart medicinal value to the herb, are alkaloids, flavonoids, saponins and large amounts of cardiac glycosides, triterpenoids, phenolic compounds and tannins. Roots were reported to contain volatile principles including 2-acetyl phenol, lignan, carinol, sesquiterpenes (carissone, carindone), lupeol, β-sitosterol, 16β-hydroxybetulinic acid, α-amyrin, β-sitosterol glycoside, and des-N-methylnoracronycine, whereas leaves were reported to contain triterpenoid constitutes as well as tannins. While, fruits have been reported to contain carisol, epimer of α-amyrin, linalool, β-caryophyllene, carissone, carissic acid, carindone, ursolic acid, carinol, ascorbic acid, lupeol, and β-sitosterol. Traditionally the plant has been used in the treatment of scabies, intestinal worms, pruritus, biliousness and also used as antiscorbutic, anthelmintic. The notable biological activities reported are analgesic, anti inflammatory, anti pyretic, cardiotonic and histamine releasing. This review has been written to presents a detailed survey of the literature on phytochemistry, traditional and biologically evaluated medicinal uses of C. carandas to promote safe and effective herbal treatments to cure a number of diseases.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 101 ◽  
Author(s):  
Balakrishnan ◽  
Vijayraja ◽  
Jo ◽  
Ganesan ◽  
Su-Kim ◽  
...  

The discovery of several revitalizing molecules that can stop or reduce the pathology of a wide range of diseases will be considered a major breakthrough of the present time. Available synthetic compounds may provoke side effects and health issues, which heightens the need for molecules from plants and other natural resources under discovery as potential methods of replacing synthetic compounds. In traditional medicinal therapies, several plant extracts and phytochemicals have been reported to impart remedial effects as better alternatives. Murraya koenigii (M. koenigii) belongs to the Rutaceae family, which is commonly used as a medicinally important herb of Indian origin in the Ayurvedic system of medicine. Previous reports have demonstrated that the leaves, roots, and bark of this plant are rich sources of carbazole alkaloids, which produce potent biological activities and pharmacological effects. These include antioxidant, antidiabetic, anti-inflammatory, antitumor, and neuroprotective activities. The present review provides insight into the major components of M. koenigii and their pharmacological activities against different pathological conditions. The review also emphasizes the need for more research on the molecular basis of such activity in various cellular and animal models to validate the efficacy of M. koenigii and its derivatives as potent therapeutic agents.


2020 ◽  
Vol 24 (4) ◽  
pp. 439-464 ◽  
Author(s):  
Rizk E. Khidre ◽  
Tahah A. Ameen ◽  
Mounir A. I. Salem

This review summarizes the synthesis, reactions, and biological activities of tetrazolo[1,5-a]quinoline derivatives. These derivatives were synthesized by several methods such as i) from the reaction of 2-chloroquinoline with sodium azide ii) from diazotization 2-hydrazinylquinoline derivatives, and iii) from intramolecular cyclocondensation of 2-azidoarylidenes. Also, the chemical reactions and pharmacological activities of some tetrazoloquinolines such as tetrazolo[1,5-a]quinoline-4-carbaldehyde, 5-chlorotetrazolo[ 1,5-a]quinoline, 4-(chloromethyl)tetrazolo[1,5-a]quinoline, tetrazolo[1,5- a]quinoline-4-carboxylic acid, and 5-azidotetrazolo[1,5-a]quinoline were discussed.


2020 ◽  
Vol 16 (5) ◽  
pp. 557-567
Author(s):  
Aparoop Das ◽  
Anshul Shakya ◽  
Surajit Kumar Ghosh ◽  
Udaya P. Singh ◽  
Hans R. Bhat

Background: Plants of the genus Inula are perennial herbs of the family Asteraceae. This genus includes more than 100 species, widely distributed throughout Europe, Africa and Asia including India. Many of them are indicated in traditional medicine, e.g., in Ayurveda. This review explores chemical constituents, medicinal uses and pharmacological actions of Inula species. Methods: Major databases and research and review articles retrieved through Scopus, Web of Science, and Medline were consulted to obtain information on the pharmacological activities of the genus Inula published from 1994 to 2017. Results: Inula species are used either alone or as an important ingredient of various formulations to cure dysfunctions of the cardiovascular system, respiratory system, urinary system, central nervous system and digestive system, and for the treatment of asthma, diabetes, cancers, skin disorders, hepatic disease, fungal and bacterial infections. A range of phytochemicals including alkaloids, essential and volatile oils, flavonoids, terpenes, and lactones has been isolated from herbs of the genus Inula, which might possibly explain traditional uses of these plants. Conclusion: The present review is focused on chemical constituents, medicinal uses and pharmacological actions of Inula species and provides valuable insight into its medicinal potential.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Sign in / Sign up

Export Citation Format

Share Document