scholarly journals In-situ multi-analytical study of ongoing corrosion processes on bronze artworks exposed outdoor

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 241
Author(s):  
Leila Es Sebar ◽  
Leonardo Iannucci ◽  
Caterina Gori ◽  
Alessandro Re ◽  
Marco Parvis ◽  
...  

<p class="Abstract">This paper presents a long-term in-situ campaign to monitor contemporary bronze statuary exposed outdoors. The case study relates to the characterisation of three sculptures belonging to the Gori Art Collection, located in the Fattoria di Celle: ‘Cavaliere’ and ‘Miracolo – Composizione’ by Marino Marini and ‘Due forme o due ombre n°2’ by Luciano Minguzzi. The overall conservation state of the sculptures was investigated by means of a multi-analytical and non-invasive approach, involving different techniques. Three-dimensional photogrammetry was performed to fully document the artworks. The chemical and microstructural features of the corrosion patinas were then characterised through X-ray fluorescence and Raman spectroscopy. In addition, the stability and the protective effectiveness of the corrosion products were assessed by electrochemical impedance spectroscopy. Thanks to the combined use of these specific techniques, the information extracted through the different analyses could be correlated with each other and with the exposure conditions. The different corrosion products were identified as being primarily copper sulphates and phosphates, and they were correlated with the different microclimate conditions related to their location on the statues. The information gathered from the presented multi-analytical approach represents the fundamental knowledge required to develop a tailored conservation project to assure the long-lasting preservation of these artworks.</p>

2020 ◽  
Vol 10 (12) ◽  
pp. 1010
Author(s):  
Deepika Konakanchi ◽  
Amy L. de Jongh Curry ◽  
Robert S. Waters ◽  
Shalini Narayana

Transcranial magnetic stimulation (TMS) is a promising, non-invasive approach in the diagnosis and treatment of several neurological conditions. However, the specific results in the cortex of the magnitude and spatial distribution of the secondary electrical field (E-field) resulting from TMS at different stimulation sites/orientations and varied TMS parameters are not clearly understood. The objective of this study is to identify the impact of TMS stimulation site and coil orientation on the induced E-field, including spatial distribution and the volume of activation in the cortex across brain areas, and hence demonstrate the need for customized optimization, using a three-dimensional finite element model (FEM). A considerable difference was noted in E-field values and distribution at different brain areas. We observed that the volume of activated cortex varied from 3000 to 7000 mm3 between the selected nine clinically relevant coil locations. Coil orientation also changed the induced E-field by a maximum of 10%, and we noted the least optimal values at the standard coil orientation pointing to the nose. The volume of gray matter activated varied by 10% on average between stimulation sites in homologous brain areas in the two hemispheres of the brain. This FEM simulation model clearly demonstrates the importance of TMS parameters for optimal results in clinically relevant brain areas. The results show that TMS parameters cannot be interchangeably used between individuals, hemispheres, and brain areas. The focality of the TMS induced E-field along with its optimal magnitude should be considered as critical TMS parameters that should be individually optimized.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2231 ◽  
Author(s):  
Sarah Tonello ◽  
Andrea Bianchetti ◽  
Simona Braga ◽  
Camillo Almici ◽  
Mirella Marini ◽  
...  

One of the main hurdles to improving scaffolds for regenerative medicine is the development of non-invasive methods to monitor cell proliferation within three-dimensional environments. Recently, an electrical impedance-based approach has been identified as promising for three-dimensional proliferation assays. A low-cost impedance-based solution, easily integrable with multi-well plates, is here presented. Sensors were developed using biocompatible carbon-based ink on foldable polyimide substrates by means of a novel aerosol jet printing technique. The setup was tested to monitor the proliferation of human mesenchymal stromal cells into previously validated gelatin-chitosan hybrid hydrogel scaffolds. Reliability of the methodology was assessed comparing variations of the electrical impedance parameters with the outcomes of enzymatic proliferation assay. Results obtained showed a magnitude increase and a phase angle decrease at 4 kHz (maximum of 2.5 kΩ and −9 degrees) and an exponential increase of the modeled resistance and capacitance components due to the cell proliferation (maximum of 1.5 kΩ and 200 nF). A statistically significant relationship with enzymatic assay outcomes could be detected for both phase angle and electric model parameters. Overall, these findings support the potentiality of this non-invasive approach for continuous monitoring of scaffold-based cultures, being also promising in the perspective of optimizing the scaffold-culture system.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 996 ◽  
Author(s):  
Suset Barroso-Solares ◽  
Paula Cimavilla-Roman ◽  
Miguel Angel Rodriguez-Perez ◽  
Javier Pinto

The use of polymeric nanocomposites has arisen as a promising solution to take advantage of the properties of nanoparticles (NPs) in diverse applications (e.g., water treatment, catalysis), while overcoming the drawbacks of free-standing nanoparticles (e.g., aggregation or accidental release). In most of the cases, the amount and size of the NPs will affect the stability of the composite as well as their performance. Therefore, a detailed characterization of the NPs present on the nanocomposites, including their quantification, is of vital importance for the optimization of these systems. However, the determination of the NPs load is often carried out by destructive techniques such as TGA or ICP-OES, the development of non-invasive approaches to that aim being necessary. In this work, the amount of silver NPs synthesized directly on the surface of melamine (ME) foams is studied using two non-invasive approaches: colorimetry and X-ray radiography. The obtained results show that the amount of silver NPs can be successfully determined from the luminosity and global color changes of the surface of the foams, as well as from the X-ray attenuance.


1994 ◽  
Vol 116 (4) ◽  
pp. 567-573 ◽  
Author(s):  
Wei Xu ◽  
Joseph Genin

The Waste Isolation Pilot Plant (WIPP) is a repository vault, mined deep into a salt strata. It eventually closes in on itself, encapsulating its contents. At room temperature salt may be regarded as a linear, isotropic, viscoelastic material. In this study, using triaxial compression test results on salt, we determine the relaxation functions and set up the boundary value problem for the encapsulation mechanism of a salt vault. Closure of the repository as a function of time is determined using a three-dimensional finite element model. The Tresca failure criterion is used to predict the stability of the repository. Finally, the study is validated by comparing our results to in-situ measured data.


2021 ◽  
Vol 11 (4) ◽  
pp. 1391
Author(s):  
Yajun Zhang ◽  
Aoshu Xu ◽  
Xin Lv ◽  
Qian Wang ◽  
Caihui Feng ◽  
...  

The development of biofilms and the related changes in porous media in the subsurface cannot be directly observed and evaluated. The primary reason that the mechanism of biofilm clogging in porous media cannot be clearly demonstrated is due to the opacity and structural complexity of three-dimensional pore space. Interest in exploring methods to overcome this limitation has been increasing. In the first part of this review, we introduce the underlying characteristics of biofilm in porous media. Then, we summarize two approaches, non-invasive measurement methods and mathematical simulation strategies, for studying fluid–biofilm–porous medium interaction with spatiotemporal resolution. We also discuss the advantages and limitations of these approaches. Lastly, we provide a perspective on opportunities for in situ monitoring at the field site.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Octavio López-Albors ◽  
Pedro José Llamas-López ◽  
Joaquín Ángel Ortuño ◽  
Rafael Latorre ◽  
Francisco Alberto García-Vázquez

AbstractThe pH–CO2–HCO3− system is a ubiquitous biological regulator with important functional implications for reproduction. Knowledge of the physiological values of its components is relevant for reproductive biology and the optimization of Assisted Reproductive Technologies (ARTs). However, in situ measurements of these parameters in the uterus are scarce or null. This study describes a non-invasive method for in situ time-lapse recording of pH and CO2 within the uterus of non-anesthetized sows. Animals were at three different reproductive conditions, estrous with no insemination and two hours after insemination, and diestrous. From pH and CO2 data, HCO3− concentration was estimated. The non-invasive approach to the porcine uterus with novel optical probes allowed the obtaining of in situ physiological values of pH, CO2, and HCO3−. Variable oscillatory patterns of pH, CO2 and HCO3− were found independently of the estrous condition. Insemination did not immediately change the levels of uterine pH, CO2 (%) and HCO3− concentration, but all the values were affected by the estrous cycle decreasing significantly at diestrous condition. This study contributes to a better understanding of the in vivo regulation of the pH-CO2-HCO3− system in the uterus and may help to optimize the protocols of sperm treatment for in vitro fertilization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josef Scholz ◽  
Nathalie Roiser ◽  
Eva-Maria Braig ◽  
Christian Petrich ◽  
Lorenz Birnbacher ◽  
...  

AbstractGout is the most common form of inflammatory arthritis, caused by the deposition of monosodium urate (MSU) crystals in peripheral joints and tissue. Detection of MSU crystals is essential for definitive diagnosis, however the gold standard is an invasive process which is rarely utilized. In fact, most patients are diagnosed or even misdiagnosed based on manifested clinical signs, as indicated by the unchanged premature mortality among gout patients over the past decade, although effective treatment is now available. An alternative, non-invasive approach for the detection of MSU crystals is X-ray dark-field radiography. In our work, we demonstrate that dark-field X-ray radiography can detect naturally developed gout in animals with high diagnostic sensitivity and specificity based on the in situ measurement of MSU crystals. With the results of this study as a potential basis for further research, we believe that X-ray dark-field radiography has the potential to substantially improve gout diagnostics.


2021 ◽  
Author(s):  
Giuseppe Casula ◽  
Silvana Fais ◽  
Francesco Cuccuru ◽  
Maria Giovanna Bianchi ◽  
Paola Ligas ◽  
...  

&lt;p&gt;The diagnosis of the conservation state of monumental structures from constraints to the spatial distribution of their physical properties on shallow and inner materials represents one of the key objectives in the application of non-invasive techniques. &lt;em&gt;In situ&lt;/em&gt;, CRP and 3D ultrasonic tomography can provide an effective coverage of stone materials in space and time. The intrinsic characteristics of the materials that make up a monumental structure and affect the two properties (i.e., reflectivity, longitudinal velocity) through the above methods substantially differ. Consequently, the content of their information is mainly complementary rather than redundant.&lt;/p&gt;&lt;p&gt;In this study we present the integrated application of different non-destructive techniques i.e., Close Range Photogrammetry (CRP), and low frequency (24 KHz) ultrasonic tomography complemented by petrographycal analysis based essentially on Optical Microscopy (OM). This integrated methodology has been applied to a Carrara marble column of the &lt;em&gt;Basilica of San Saturnino&lt;/em&gt;, in Byzantine-Proto-Romanesque style, which is part of the Paleo Christian complex of the V-VI century. This complex also includes the adjacent Christian necropolis in the square of &lt;em&gt;San Cosimo&lt;/em&gt; in the city of Cagliari, Sardinia, Italy. The column under study is made of bare material dating back probably to the first century A.D., it was subjected to various traumas due to disassembly and transport to the site, including damage caused by the close blast of a WWII fragmentation bomb.&lt;/p&gt;&lt;p&gt;High resolution 3D modelling of the studied artifact was computed starting from the integration of proximal sensing techniques such as CRP based on Structure from Motion (SfM), with which information about the geometrical anomalies and reflectivity of the investigated marble column surface was obtained. On the other hand, the inner parts of the studied body were successfully inspected in a non-invasive way by computing the velocity pattern of the ultrasonic signal through the investigated materials using 3D ultrasonic tomography. This technique gives information on the elastic properties of the material related with mechanical properties and a number of factors, such as presence of fractures, voids, and flaws. Extracting information on such factors from the elastic wave velocity using 3D tomography provides a non-invasive approach to analyse the property changes of the inner material of the ancient column. The integrated application of &lt;em&gt;in situ&lt;/em&gt; CRP and ultrasonic techniques provides a full 3D high resolution model of the investigated artifact. This model enhanced by the knowledge of the petrographic characteristics of the materials, improves the diagnostic process and affords reliable information on the state of conservation of the materials used in the construction processes of the studied monumental structure. The integrated use of the non-destructive techniques described above also provides suitable data for a possible restoration and future preservation.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;&amp;#160;&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgments: &lt;/strong&gt;This work was partially supported by FIR (Fondi integrativi per la Ricerca) funded by the University of Cagliari (Italy). The authors would also like to thank the Ministero dei Beni e delle Attivit&amp;#224; Culturali. Polo Museale della Sardegna and Arch. Alessandro Sitzia for their kind permission to work on the &lt;em&gt;San Saturnino Basilica&lt;/em&gt;.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document