scholarly journals The Effect of Additional Ethanol Steam Temperature Variations on Pertalite Fuel Use on Performance and Efficiency of 4 Stroke Motorcycles

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Akhmad Saifudin

The means of transportation that are widely used in Indonesia are vehicles in the form of motorbikes and cars, as well as the increasing dependence on the consumption of fuel oil (BBM).  The impact is that the need for fuel oil is also high.  As a result of dependence on fossil energy this one increases.  Based on the problems that have been raised, a concept has emerged to make alternative fuels that can be used as a fuel mixture or as an alternative to these fuels.  One of the renewable energy sources that can be utilized is ethanol which comes from corn, wheat, and others.  ethanol vapor as a fuel mixture, where the ethanol used is not mixed directly into the fuel.  And by utilizing ethanol vapor, it is also expected to increase the performance and efficiency of motorbikes.  In this study we used a reference concept which was then used as a concept, how to influence additional ethanol vapor temperature variations on the use of pertalite fuel on the performance and efficiency of 4-stroke motorbikes using temperature variations of 400C, 500C, and 600C and variations of valve openings  on the ethanol vapor hose to the intake manifold.  After conducting the test, the results show that the best power is obtained from the addition of ethanol steam at a temperature of 450 full openings when it is at 7973 RPM rotation which shows a power of 31.2 HP and when it is at 5757 RPM rotation which shows a torque of 32.24 N.m.  The best fuel efficiency is obtained from the addition of ethanol steam with a temperature of 450 full openings with a fuel consumption of 1 liter only reduced by 75 ml every 5 minutes of use at the same speed.

Author(s):  
Muji Setiyo ◽  
Budi Waluyo ◽  
Paolo Gobbato ◽  
Massimo Masi

Alternative fuels have become an effective solution to reduce the impact of road transport on the environment. On the other hand, the growing uses of air-conditioning (AC) have contributed to worsening the fuel economy of passenger vehicles. Liquid petroleum gas (LPG), if injected in the gaseous phase to power SI engines, may allow reducing the fuel consumption due to AC devices through the recovery of cooling energy from the fuel systems. This paper presents lab-scale tests of an air conditioning system prototype for LPG-fuelled vehicles. The prototype has been assembled using standard vehicle components to quantify the cooling energy recoverable from the LPG evaporation before the fuel is injected into the engine intake manifold. Temperature and humidity of the air exiting the LPG evaporator are measured for fuel mass flow rates typical of light-duty vehicles. The energy efficiency ratio (EER) of the prototype achieves 2.72 when cooling power equals 1.2 kW. Although the system tested needs improvements, the experimental data show that the cooling energy recovered by LPG evaporation can significantly reduce the power consumption of standard AC systems in passenger cars.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8471
Author(s):  
Aleksandras Chlebnikovas ◽  
Dainius Paliulis ◽  
Artūras Kilikevičius ◽  
Jaroslaw Selech ◽  
Jonas Matijošius ◽  
...  

Energy (including thermal) needs are growing rapidly worldwide thus leading to increased energy production. Considering stricter requirements for the employment of non-renewable energy sources, the use of biofuel in energy facilities appears as one of the best options, having high potential for growth that will increase in the long run both in the Baltic region and the European Union as a whole. This publication investigates the possibilities of using various blends of biofuel containing lignin for heat production and emissions to the air during combustion processes. The paper examines the chemical composition of lignin and bottom ash and explores the impact of a different ratio of lignin in the fuel mixture, the effect of the power of biofuel combustion plants (boilers) and the influence of fuel supply to the combustion chamber on gaseous pollutants (CO, NOx, SO2) and particulate matter emissions. The results of the conducted study demonstrate that, in contrast to pure lignin, the concentrations of alkali metals, boron and, to a lesser extent, nickel and chlorine have increased the most in bottom ash. The use of lignin can effectively reduce the need for conventional biofuel by 30–100% and to increase the temperature of exhaust gases. The lowest emissions have been observed using a mixture of 30% of lignin and biofuel at the lowest range of power (2.5–4 MW). Under the optimal oxygen/temperature mode, carbon monoxide concentrations are approximately 20 mg/Nm3 and those of nitrogen oxides–500 mg/Nm3. Particulate matter emissions reach 150 mg/Nm3, and hence applying air treatment equipment is required.


2019 ◽  
Vol 22 (5) ◽  
pp. 67-75 ◽  
Author(s):  
K. I. Gryadunov ◽  
A. N. Kozlov ◽  
V. M. Samoylenko ◽  
Shadi Ardeshiri

Modern trends of civil aviation development indicate the need to improve fuel efficiency and environmental friendliness of the utilized fuels. The use of conventional jet fuel is meeting to a lesser degree the promising requirements concerning environmental friendliness at a constantly rising price for it. Apart from that, oil reserves are limited. According to many experts, the solution to the growing problems with oil fuels can be application of alternative types of aviation fuel. A number of companies around the world, together with aircraft manufacturers under the significant state support, are actively developing new types of fuel. At the moment the most widespread biofuels consisting of bioethanol are obtained from various plant and animal sources. Alternative fuels should not be inferior to petroleum fuels in its operational properties. A possible transition to them should not require significant costs for the modernization of aircraft and facilities of ground aviation fuel supply. Therefore, an urgent task is to compare the main indicators of the quality of oil fuels, biofuels and their mixtures to assess the possibility of using biofuels on aircraft. A comparative analysis was carried out on some quality indicators. Afterwards the comments were given on the impact of changes of these quality indicators on the performance properties of the fuels. It is shown that according to some quality indicators, biofuels under research have the advantages over oil ones. The relevance of comprehensive study of the performance properties of biofuels is obvious. The improvement of oil fuels and their comprehensive study have been under way for more than 60 years. Biofuels are just beginning their life, so it is reasonable to conduct thorough research on their use in aviation.


2021 ◽  
Vol 2 (1) ◽  
pp. 11-16
Author(s):  
Raybian Nur

The use of internal combustion motors has various positive and negative impacts. A large number of motorized vehicles affect the high demand for fuel. Fuel oil is a vital economic object because it dramatically influences the financial entity, namely the increase in goods and services. What can do several things to reduce the high demand for this fuel, namely by looking for alternative fuels or finding fuel economy. The purpose of this study was to determine the impact of adding additives to fuel on fuel consumption. The research method applies an experimental procedure in which the percentage of mixing premium fuel with additives between camphor and eco racing with a content of 1 - 4 grams of additive for each sample tested on a vehicle. The results obtained are adding additives the properties of premium fuels change in terms of fuel consumption where the addition of several types of additives can reduce the rate of fuel consumption. The results obtained are that with the addition of these additives, the fuel consumption becomes more efficient by a difference of approximately 6 ml/minute.


Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 878 ◽  
Author(s):  
Oliwia Pietrzak ◽  
Krystian Pietrzak

This paper focuses on effects of implementing zero-emission buses in public transport fleets in urban areas in the context of electromobility assumptions. It fills the literature gap in the area of research on the impact of the energy mix of a given country on the issues raised in this article. The main purpose of this paper is to identify and analyse economic effects of implementing zero-emission buses in public transport in cities. The research area was the city of Szczecin, Poland. The research study was completed using the following research methods: literature review, document analysis (legal acts and internal documents), case study, ratio analysis, and comparative analysis of selected variants (investment variant and base variant). The conducted research study has shown that economic benefits resulting from implementing zero-emission buses in an urban transport fleet are limited by the current energy mix structure of the given country. An unfavourable energy mix may lead to increased emissions of SO2 and CO2 resulting from operation of this kind of vehicle. Therefore, achieving full effects in the field of electromobility in the given country depends on taking concurrent actions in order to diversify the power generation sources, and in particular on increasing the share of Renewable Energy Sources (RES).


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


Author(s):  
Rade M. Ciric ◽  
Sasa N. Mandic

AbstractThe Republic of Serbia must make significant efforts to promote and exploit renewable energy sources and increase energy efficiency in all energy sectors to ensure energy security and economic competitiveness, reduce the negative impact on the environment from energy production and use, and contribute to global efforts to reduce greenhouse gases. Within the paper several issues of integration of recently realized CHP plant are introduced and discussed. Firstly, the legal and energy policy issues in the Republic of Serbia regarding connecting CHP to the grid are presented. The challenges and technical solutions for CHP connection to the grid, as well as power quality issues and the role of the CHP plant during the restoration of power supply during the maintenance of the substation and unplanned loss of high voltage supply, are presented and discussed. Finally, the impact of prospective massive integration of CHP on the energy balance and CO2 emission reduction in the province of Vojvodina in Serbia is investigated and discussed. Since it is the first CHP plant realized in Serbia, it is crucial that experience be shared to all potential stakeholders in the future energy efficiency projects.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. Andronic ◽  
J. Honermann ◽  
M. Klasen ◽  
C. Klein-Bösing ◽  
J. Salomon

Abstract In this paper we present a study of in-medium jet modifications performed with JEWEL and PYTHIA 6.4, focusing on the uncertainties related to variations of the perturbative scales and nuclear parton distribution functions (PDFs) and on the impact of the initial and crossover temperature variations of the medium. The simulations are compared to LHC data for the jet spectrum and the nuclear modification factor. We assess the interplay between the choice of nuclear PDFs and different medium parameters and study the impact of nuclear PDFs and the medium on the jet structure via the Lund plane.


Sign in / Sign up

Export Citation Format

Share Document