scholarly journals ANALISIS GGE BIPLOT PADA HASIL KLON-KLON UBI KAYU MENGGUNAKAN METODE RESTRICTED MAXIMUM LIKELIHOOD

2016 ◽  
Vol 25 (1) ◽  
pp. 89
Author(s):  
Kartika Noerwijati ◽  
NFn Nasrullah ◽  
NFn Taryono ◽  
Djoko Prajitno

The study was conducted in five locations i.e Kediri, Ponorogo, Probolinggo, Malang, and Mojokerto, from November 2010 until August 2011. The planting materials used were 15 cassava clones. The research objective was to compare analysis methods of the genotype × environment interaction, namely: a) GGE technique using REML without A matrix by assuming homogeneous residual error variance, b) GGE technique using REML with A matrix by assuming homogeneous residual error variance, c) GGE technique using REML without A matrix by assuming heterogeneous residual error variance, and d) GGE technique using REML with A matrix by assuming heterogeneous residual error variance. The results showed that GGE technique using REML without A matrix by assuming heterogeneous residual error variance was more appropriate. Clones CMM 03038-7 (G8) had a wide adaptability and high yield potential, and its clone was closest to the ideal criteria for genotype compared with other genotypes. Clones CMM 03094-4 (G10) had specific adaptability in the environments S2 (Malang) and S5 (Mojokerto), and it had higher yield potential than the control varieties UJ5, Malang 6, and Adira 4. Environment Kediri (S1) had the highest yield among other environments and Kediri was a suitable environment for the growth and selection of cassava.<p align="center"> </p>

2018 ◽  
Vol 44 (4) ◽  
pp. 507-514
Author(s):  
MU Kulsum ◽  
MJ Hasan ◽  
MN Haque ◽  
M Shalim Uddin ◽  
KM Iftekharduddaula

Genotype by environment interaction (GEI) is a major complication in plant breeding. Authors used additive main effects and multiplicative interaction (AMMI) to evaluate the effects of GEI in hybrid rice genotype and their adaptation in three years at four locations. Among rice hybrid genotypes ACI93024 was stable in all environments with high yield potential. Using AMMI analysis AMMI 1 biplot showed the genotypes HS-273, Heera-2, ACI-2 and HRM-02 were highly stable with moderate yield potential but the genotype ACI93024 was more adapted to a wide range of environment than the rest of the genotypes, while BRRI dhan28 indices the lowest stability. ACI-2, LP-70 and Mayna were specifically adapted to the environment of Rangpur, Jessore and Gazipur, respectively. Comilla was identified as stable environment for all the genotypes.


1998 ◽  
Vol 34 (2) ◽  
pp. 177-188 ◽  
Author(s):  
I. DE CAUWER ◽  
R. ORTIZ

Plantain hybrids and landraces, and banana cultivars (Musa spp. L.) were evaluated for three years in the plant and ratoon crops at three locations in the humid lowland forest (Mbalmayo and Onne) and derived savanna (Ibadan) agro-ecozones of sub-Saharan Africa. Additive main effects and multiplicative interaction (AMMI) models accounted for a significant percentage of the genotype × environment interaction (GE) affecting bunch weight (kg plant−1) and yield potential (t ha−1 a−1). Obino l'Ewai, a plantain landrace, showed little GE for bunch weight, whereas the exotic cooking banana cultivar Cardaba had the most stable yield potential as revealed by the biplots of the GE analysis (AMMI-2 biplots). Plantain hybrids achieved high yield potential due to their short growth cycle. The high yield potential of the cooking bananas was mainly the result of their fast sucker development.


2021 ◽  
Vol 34 (4) ◽  
pp. 739-751
Author(s):  
FELIPE CECCON ◽  
LIVIA MARIA CHAMMA DAVIDE ◽  
MANOEL CARLOS GONÇALVES ◽  
ADRIANO DOS SANTOS ◽  
ELAINE PINHEIRO REIS LOURENTE

ABSTRACT Maize is widely cultivated in Brazil, and nitrogen is a major nutrient for its yield. Azospirillum brasiliense bacteria help in plant nutrient supply; however, maize-Azospirillum symbiosis is not very efficient and requires selection of genotypes with a more efficient association. Multivariate indexes facilitate selection using a single value, and GGE-biplot analysis enables the visualization of the genotype-environment interaction from this value. The present study aimed to select progenies that effectively associate with the bacteria and study the efficiency of progeny selection using a multivariate index observed in the GGE-biplot method. The experiments were conducted in two cities in the state of Mato Grosso do Sul. In a simple 16 × 16 lattice, 256 genotypes were evaluated in the presence and absence of diazotrophic bacteria. PH, SL, SD, FI, HGM, SS, and GY were measured for the construction of a selection index. Genotypes exhibited significant genotype–environment interactions for all evaluated traits, allowing their use in the selection index. High-yield genotypes were not those with the highest selection index values. The traits GY, SD, HGM, SS, SL, and PH contributed the most to the construction of the index. The no-till system may have contributed to the weaker response of maize inoculated with Azospirillum brasiliense. Genotype 96 had the highest values of the characteristics used to calculate the GISI, along with the stability between environments.


2019 ◽  
Vol 21 (1) ◽  
pp. 165 ◽  
Author(s):  
Dennis N. Lozada ◽  
Jayfred V. Godoy ◽  
Brian P. Ward ◽  
Arron H. Carter

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 558
Author(s):  
Xing Huang ◽  
Su Jang ◽  
Backki Kim ◽  
Zhongze Piao ◽  
Edilberto Redona ◽  
...  

Rice yield is a complex trait that is strongly affected by environment and genotype × environment interaction (GEI) effects. Consideration of GEI in diverse environments facilitates the accurate identification of optimal genotypes with high yield performance, which are adaptable to specific or diverse environments. In this study, multiple environment trials were conducted to evaluate grain yield (GY) and four yield-component traits: panicle length, panicle number, spikelet number per panicle, and thousand-grain weight. Eighty-nine rice varieties were cultivated in temperate, subtropical, and tropical regions for two years. The effects of both GEI (12.4–19.6%) and environment (23.6–69.6%) significantly contributed to the variation of all yield-component traits. In addition, 37.1% of GY variation was explained by GEI, indicating that GY performance was strongly affected by the different environmental conditions. GY performance and genotype stability were evaluated using simultaneous selection indexing, and 19 desirable genotypes were identified with high productivity and broad adaptability across temperate, subtropical, and tropical conditions. These optimal genotypes could be recommended for cultivation and as elite parents for rice breeding programs to improve yield potential and general adaptability to climates.


2002 ◽  
Vol 138 (3) ◽  
pp. 249-253 ◽  
Author(s):  
F. MEKBIB

Phenotypic yield stability is a trait of special interest for plant breeders and farmers. This value can be quantified if genotypes are evaluated in different environments. Common bean is the main cash crop and protein source of farmers in many lowland and mid-altitude areas of Ethiopia. An experiment was undertaken to evaluate common bean genotypes for yield performance at Alemaya, Bako and Nazreth in Ethiopia for 3 years. The yield performance of genotypes was subjected to stability analysis and yield-stability statistics were generated to aid the selection of genotypes that were high yielding and very stable. The significant genotype by environment interaction indicated that the relative performance of the varieties altered in the different environments. Genotype yield performance varied ranging from 1511–2216 kg/ha. Simultaneous selection for yield and yield-stability statistics using YS(i) statistics indicated that A 410, GLP x92, Mx-2500-19, G 2816, A-195, 997-CH-1173, Diacol calima, ICA 15541 and AND 635 were both high yielding and stable. Following this study, using farmers’ evaluation and other criteria, GLP x92 and G-2816 were identified as preferred genotypes and were released for further production.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1992
Author(s):  
Hafid Aberkane ◽  
Ahmed Amri ◽  
Bouchra Belkadi ◽  
Abdelkarim Filali-Maltouf ◽  
Jan Valkoun ◽  
...  

Durum wheat (Triticum turgidum subsp. durum) is mostly grown in Mediterranean type environments, characterized by unpredictable rainfall amounts and distribution, heat stress, and prevalence of major diseases and pests, all to be exacerbated with climate change. Pre-breeding efforts transgressing adaptive genes from wild relatives need to be strengthened to overcome these abiotic and biotic challenges. In this study, we evaluated the yield stability of 67 lines issued from interspecific crosses of Cham5 and Haurani with Triticum dicoccoides, T. agilopoides, T. urartu, and Aegilops speltoides, grown under 15 contrasting rainfed and irrigated environments in Morocco, and heat-prone conditions in Sudan. Yield stability was assessed using parametric (univariate (e.g., Bi, S2di, Pi etc) and multivariate (ASV, SIPC)) and non-parametric (Si1, Si2, Si3 and Si6) approaches. The combined analysis of variance showed the highly significant effects of genotypes, environments, and genotype-by-environment interaction (GEI). The environments varied in yield (1370–6468 kg/ha), heritability (0.08–0.9), and in their contribution to the GEI. Several lines derived from the four wild parents combined productivity and stability, making them suitable for unpredictable climatic conditions. A significant advantage in yield and stability was observed in Haurani derivatives compared to their recurrent parent. Furthermore, no yield penalty was observed in many of Cham5 derivatives; they had improved yield under unfavorable environments while maintaining the high yield potential from the recurrent parent (e.g., 142,026 and 142,074). It was found that a limited number of backcrosses can produce high yielding/stable germplasm while increasing diversity in a breeding pipeline. Comparing different stability approaches showed that some of them can be used interchangeably; others can be complementary to combine broad adaption with higher yield.


2015 ◽  
Vol 49 (6) ◽  
Author(s):  
Adnan Al-Yassin ◽  
Murari Singh ◽  
Michael Baum

Barley (<italic>Hordeum vulgare</italic> L.) is an important crop with excellent nutritious feed and food grain. Winter barley, in particular, is predominantly grown in highland under rainfed systems due to its ability to tolerate cold. However, it has low productivity due to complex genetic mechanisms and limitations in determining an optimal environment for its selection and evaluation. This study evaluated the genetic variability, heritability and genetic gain for yield in barley, using preliminary un-replicated yield trials in 2011 at two locations and followed by replicated sets of yield trials in 2012, all in Syria. Significant genotypic variability was found at both stages of the evaluation/selection. During 2011, the best linear unbiased predictor means of test genotypes adjusted for spatial variability were found in the range of 1.75–3.75 t/ha at Tel Hadya and 0.03–1.58 t/ha at Breda. A set of 22 advanced yield trials comprising a total of 601 lines at Tel Hadya in 2012 yielded in the range of 1.85–3.13 t/ha. Based on the mean over these set of trials, the highest heritable trait was days to heading (broad-sense heritability on mean-basis= 0.64) followed by yield (the heritability = 0.30). The yield gain due to selection, at 20% intensity of selection, was 5.66% at Tel Hadya and 27.1% at Breda in 2011 using un-replicated genetic material, while it was 7.01 % for the replicated trials at Tel Hadya in 2012. We recommend use of the best lines selected in 2012 at Tel Hadya for further exploitation in genotype × environment interaction studies for high yield and specific and broad adaptation.


2019 ◽  
Vol 20 (10) ◽  
Author(s):  
Miftahur Rizqi Akbar ◽  
Bambang Sapta Purwoko ◽  
Iswari Saraswati Dewi ◽  
Willy Bayuardi Suwarno ◽  
Sugiyanta

Abstract. Akbar MR, Purwoko BS, Dewi IS, Suwarno WB, Sugiyanta. 2019. Short Communication: Selection of doubled haploid lines of rainfed lowland rice in preliminary yield trial. Biodiversitas 20: 2796-2801. Yield trial is an important step in rice breeding program. This research was aimed at evaluating agronomic characters and selecting the best doubled haploid rainfed rice lines for next advanced yield trial. An experiment was conducted in Indramayu from March to August 2017. The research was arranged in randomized complete block design (RCBD) with three replications. Materials used were fifty-eight doubled haploid lines and two check varieties namely Ciherang and Inpari 18. The results revealed that all observed characters had broad genetic variability and high heritability. The number of productive tillers and the number of filled grains per panicle had a positive correlation and direct effect on productivity. Based on index selection, thirty lines were selected to have good agronomic characters and high yield. These lines had characteristics of plant height (85.7-124.7 cm), number of productive tillers (8.6-14.8 tillers), day to harvest (104.0-117.3 days), number of filled grains per panicle (136.7-264.7 grains), number of total grains per panicle (152.0-305.7 grains), weight of 1000 grain (21.5-31.3 g), and productivity (4.1-6.8 tons ha-1). Keywords: good agronomic trait, high yield potential, selection index


Ceiba ◽  
2012 ◽  
Vol 51 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Bruno Galvêas Laviola ◽  
Rodrigo Barros Rocha ◽  
Adilson Kenji Kobayashi ◽  
Tatiana Barbosa Rosado ◽  
Leonardo Lopes Bhering

Jatropha curcas L. is a perennial oilseed crop belonging to the Euphorbiaceae family, whose oil content in seeds varies from 33 to 38%, giving a yield potential of over 1200 kg of oil per hectare. However, it is a non-domesticated species and research is required for commercial exploration of this species for biodiesel production. The strategies of Embrapa’s jatropha breeding program aim at developing cultivars with high yield and oil content, non-toxic (absence of phorbol esters), resistant to biotic and abiotic stresses and adapted to the main producing regions of Brazil. The program activities started with the enrichment and characterization of the germplasm bank, currently with over 200 accessions from different regions of Brazil. Depending on the specific objectives of the program, different selection and breeding methods are employed. In order to understand the genetic control of specific traits and to generate segregating populations, experimental designs such as diallel crosses, which allow the estimation of heterosis, general combining ability and specific combining ability among genotypes, have been adopted. In addition, molecular markers such as SSR and SNPs are being developed and may help in early selection for characters such as the absence of toxicity in the grains. The program also includes the study on genotype × environment interaction with the evaluation of the progenies/improved clones in different regions of Brazil, which is essential for recommending cultivars for specific or broad climatic conditions. In conclusion, considering that J. curcas is a perennial species and still not domesticated, approximately 5-7 years will be required to obtain improved cultivars and evidence-based information on crop production systems to support commercial cultivation.


Sign in / Sign up

Export Citation Format

Share Document