scholarly journals MEASUREMENT OF CO AND NO2 GAS CONCENTRATION'S BY MULTISENSOR MICROSYSTEM IN THE MODE OF PULSE HEATING

2017 ◽  
Vol 8 (2) ◽  
pp. 160-167
Author(s):  
O. G. Reutskaya ◽  
Y. M. Pleskachevsky

The most promising for mass use in gas analysis equipment are semiconductor gas sensors due to their high reliability, easy operation and relatively low cost. Power consumption in the single-sensor mode, constant heating is from 250 to 600 W average and in pulsed mode heating – ≤ 20 W. The aim of this work was to study the effectiveness of the pulsed heating for multisensor microsystems consisting of two sensors on the substrate of the nanostructured aluminum oxide, compared with the mode of constant heating.For sensitive layers were chosen compositions: SnO2+Pt+Pd at the first sensor of the microsystem and In2O3+Al2O3+Pt on the second. Measuring the sensor response in the pulse heating mode was carried out as follows. Power on each sensor microsystem was installed 1.3 mW. Then the short-term heating (theat.. = 5 s) was performed at the power 61 mW. The detected gases CO and NO2 with the concentration 200 ppm and 4 ppm, correspondingly, were submitted to the microsystem after 15 minutes. The resistance values for each of the sensor were fixed. According to the results determine the sensitivity (sensor response) the maximum value is after 60 s for the sensor with a sensing layer SnO2+Pt+Pd when exposed to CO was 670 %, and for the sensor with In2O3+Al2O3+Pt – 380 %.Advantages of using pulsed heating from the point of view of a power consumption multisensor microsystem mW-range and high performance sensors on substrates of nanostructured alumina were established.

Cloud computing is a paradigm in which we have virtualized computer systems that deliver services, processing, storage, network, and other fundamental computing resources. Cloud computing enables low cost, device location independence, high reliability, scalability and sustainability. This paper describes the present state of cloud computing research by examining literature, identifying current study trends. We have analyzed the resource allocation method and concluded. It typically designs for high performance that supports the peak resource requirements. After several analyses the power consumption of data center and cloud systems as increased almost several times. There is a lack of research that addresses challenges of managing multiple resources with objective of allocating enough resources for each work load to optimizing power consumption. These papers survey various types of resource allocation algorithms that improve the cloud Infrastructure.


2021 ◽  
Vol 6 (51) ◽  
pp. eaaz5796
Author(s):  
I. D. Sîrbu ◽  
G. Moretti ◽  
G. Bortolotti ◽  
M. Bolignari ◽  
S. Diré ◽  
...  

Future robotic systems will be pervasive technologies operating autonomously in unknown spaces that are shared with humans. Such complex interactions make it compulsory for them to be lightweight, soft, and efficient in a way to guarantee safety, robustness, and long-term operation. Such a set of qualities can be achieved using soft multipurpose systems that combine, integrate, and commute between conventional electromechanical and fluidic drives, as well as harvest energy during inactive actuation phases for increased energy efficiency. Here, we present an electrostatic actuator made of thin films and liquid dielectrics combined with rigid polymeric stiffening elements to form a circular electrostatic bellow muscle (EBM) unit capable of out-of-plane contraction. These units are easy to manufacture and can be arranged in arrays and stacks, which can be used as a contractile artificial muscle, as a pump for fluid-driven soft robots, or as an energy harvester. As an artificial muscle, EBMs of 20 to 40 millimeters in diameter can exert forces of up to 6 newtons, lift loads over a hundred times their own weight, and reach contractions of over 40% with strain rates over 1200% per second, with a bandwidth over 10 hertz. As a pump driver, these EBMs produce flow rates of up to 0.63 liters per minute and maximum pressure head of 6 kilopascals, whereas as generator, they reach a conversion efficiency close to 20%. The compact shape, low cost, simple assembling procedure, high reliability, and large contractions make the EBM a promising technology for high-performance robotic systems.


Author(s):  
Chun-Yuan Lin ◽  
Jin Ye ◽  
Che-Lun Hung ◽  
Chung-Hung Wang ◽  
Min Su ◽  
...  

Current high-end graphics processing units (abbreviate to GPUs), such as NVIDIA Tesla, Fermi, Kepler series cards which contain up to thousand cores per-chip, are widely used in the high performance computing fields. These GPU cards (called desktop GPUs) should be installed in personal computers/servers with desktop CPUs; moreover, the cost and power consumption of constructing a high performance computing platform with these desktop CPUs and GPUs are high. NVIDIA releases Tegra K1, called Jetson TK1, which contains 4 ARM Cortex-A15 CPUs and 192 CUDA cores (Kepler GPU) and is an embedded board with low cost, low power consumption and high applicability advantages for embedded applications. NVIDIA Jetson TK1 becomes a new research direction. Hence, in this paper, a bioinformatics platform was constructed based on NVIDIA Jetson TK1. ClustalWtk and MCCtk tools for sequence alignment and compound comparison were designed on this platform, respectively. Moreover, the web and mobile services for these two tools with user friendly interfaces also were provided. The experimental results showed that the cost-performance ratio by NVIDIA Jetson TK1 is higher than that by Intel XEON E5-2650 CPU and NVIDIA Tesla K20m GPU card.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000627-000632 ◽  
Author(s):  
Swapan K. Bhattacharya ◽  
Fei Xie ◽  
Han Wu ◽  
Kelley Hodge ◽  
Keck Pathammavong ◽  
...  

The objective of this study is to design and fabricate a high reliability LED Insulated Metal Substrate (IMS) package to complex heat sink attachment using an advanced thermal interface material (TIM). The assembly consists of LED IMS parts bonded to a heat spreader/sink using an advanced TIM and a corner bond material to quickly and accurately secure the LEDs in position. The corner bond adhesive is snap cured for fast machine cycle times while the high performance, high adhesion TIM materials cure throughout the rest of the assembly operation. This approach allows high accuracy LED bonding without the need for alignment pins or fasteners to anchor to the IMS. The IMS attached to the heat sink is then electrically interconnected with a thin flex substrate on top of the IMS. This approach is expected to replace the current mechanical fastners and low strength silicone TIM materials and reduce the cycle time and overall placement cost which are key drivers especially for the automotive industry.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2457
Author(s):  
Hui Xu ◽  
Zehua Peng ◽  
Huaguo Liang ◽  
Zhengfeng Huang ◽  
Cong Sun ◽  
...  

A high-performance and low power consumption triple-node upset self-recoverable latch (HTNURL) is proposed. It can effectively tolerate single-node upset (SNU), double-node upset (DNU), and triple-node upset (TNU). This latch uses the C-element to construct a feedback loop, which reduces the delay and power consumption by fast path and clock gating techniques. Compared with the TNU-recoverable latches, HTNURL has a lower delay, reduced power consumption, and full self-recoverability. The delay, power consumption, area overhead, and area-power-delay product (APDP) of the HTNURL is reduced by 33.87%, 63.34%, 21.13%, and 81.71% on average.


2020 ◽  
Vol 17 (5) ◽  
pp. 621-632
Author(s):  
Seyyed Javad Seyyed Mahdavi Chabok ◽  
Seyed Amin Alavi

Purpose The routing algorithm is one of the most important components in designing a network-on-chip (NoC). An effective routing algorithm can cause better performance and throughput, and thus, have less latency, lower power consumption and high reliability. Considering the high scalability in networks and fault occurrence on links, the more the packet reaches the destination (i.e. to cross the number of fewer links), the less the loss of packets and information would be. Accordingly, the proposed algorithm is based on reducing the number of passed links to reach the destination. Design/methodology/approach This paper presents a high-performance NoC that increases telecommunication network reliability by passing fewer links to destination. A large NoC is divided into small districts with central routers. In such a system, routing in large routes is performed through these central routers district by district. Findings By reducing the number of links, the number of routers also decreases. As a result, the power consumption is reduced, the performance of the NoC is improved, and the probability of collision with a faulty link and network latency is decreased. Originality/value The simulation is performed using the Noxim simulator because of its ability to manage and inject faults. The proposed algorithm, XY routing, as a conventional algorithm for the NoC, was simulated in a 14 × 14 network size, as the typical network size in the recent works.


2020 ◽  
Vol 10 (18) ◽  
pp. 6222 ◽  
Author(s):  
Girts Bumanis ◽  
Jelizaveta Zorica ◽  
Diana Bajare

The potential of phosphogypsum (PG) as secondary raw material in construction industry is high if compared to other raw materials from the point of view of availability, total energy consumption, and CO2 emissions created during material processing. This work investigates a green hydraulic ternary system binder based on waste phosphogypsum (PG) for the development of sustainable high-performance construction materials. Moreover, a simple, reproducible, and low-cost manufacture is followed by reaching PG utilization up to 50 wt.% of the binder. Commercial gypsum plaster was used for comparison. High-performance binder was obtained and on a basis of it foamed lightweight material was developed. Low water-binder ratio mixture compositions were prepared. Binder paste, mortar, and foamed binder were used for sample preparation. Chemical, mineralogical composition and performance of the binder were evaluated. Results indicate that the used waste may be successfully employed to produce high-performance binder pastes and even mortars with a compression strength up to 90 MPa. With the use of foaming agent, lightweight (370–700 kg/m3) foam concrete was produced with a thermal conductivity from 0.086 to 0.153 W/mK. Water tightness (softening coefficient) of such foamed material was 0.5–0.64. Proposed approach represents a viable solution to reduce the environmental footprint associated with waste disposal.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000402-000408
Author(s):  
Venky Sundaram ◽  
Jialing Tong ◽  
Kaya Demir ◽  
Timothy Huang ◽  
Aric Shorey ◽  
...  

This paper presents, for the first time, the thermo-mechanical reliability and the electrical performance of 30μm through package vias (TPVs) formed by Corning in ultra-thin low-cost bare glass interposers and metallized directly by sputter seed and electroplating. In contrast to glass interposers with polymer coated glass cores reported previously, this paper reports on direct metallization of thin and uncoated glass panels with fine pitch TPVs. The scalability of the unit processes to large panel sizes is expected to result in bare glass interposers at 2 to 10 times lower cost than silicon interposers fabricated using back end of line (BEOL) wafer processes. The thermo-mechanical reliability of 30μm TPVs was studied by conducting accelerated thermal cycling tests (TCT), with most via chains passing 1000 cycles from −55°C to 125°C. The high-frequency behavior of the TPVs was characterized by modeling, design and measurement up to 30 GHz.


1992 ◽  
Vol 264 ◽  
Author(s):  
Chung W. Ho ◽  
Sharon McAfee-Hunter

AbstractThin-film multichip modules (i.e. MCM-D) can provide simple, low-cost packaging and interconnect options for interconnecting high-density, high-performance devices. The following is an overview of an MCM-D technology that can be implemented on top of several substrate materials. Tradeoffs will be discussed related to using different substrate materials and the corresponding implications from the assembly point of view. The MCM-D manufacturing process is reviewed and the subsequent reliability results are discussed.


Sign in / Sign up

Export Citation Format

Share Document