scholarly journals Improving the Energy Performance of Traction Electric Drive Vehicles in Solving Electric Braking

2021 ◽  
Vol 20 (1) ◽  
pp. 52-57
Author(s):  
V. Herasymenko ◽  
N. Shpika ◽  
M. Smyrnyi ◽  
D. Khuruzha

The effectiveness of the electric braking system largely depends on how the braking is carried out, whether the braking characteristics that it forms are acceptable for a given vehicle, how simple and reliable the technical solutions embedded in the system are, and where the braking energy is used. With electric braking, it is possible not only to extinguish the electrical energy on the braking resistor, but also to send it back to the storage device and again use it in traction mode. This paper analyzes the most common methods of electric braking used in electric braking systems for traction electric drives that are in operation on vehicles. As the main criterion for evaluating the method of electric braking, its energy indicators are selected. The results of scientific research of the proposed new method of electric braking, which provides better energy performance and new technical solutions for its implementation, are considered. When implementing this method, DC motors are operated by sequential excitation generators. The current in the field windings is regulated by a DC-DC-converter. Energy in the power circuit is accumulated in storage devices and used in traction mode. When the storage devices are filled, the energy in the power circuit is extinguished by the braking resistor, and the energy from the output of the DC-DC-converter is used for own needs. In this case, braking characteristics are formed as in generators of independent excitation. To increase the braking efficiency at low speeds, it is necessary to smoothly regulate the resistance of the braking resistors by shunting them with transistor switches.

2020 ◽  
Vol 1 (154) ◽  
pp. 2-7
Author(s):  
V. Herasymenko ◽  
V. Pliuhin ◽  
М. Shpika

The technical and energy characteristics of the most commonly used electrical braking systems are analyzed, their disadvantages are indicated. An electrical braking system with variable structure and DC motors with the best technical and energy performance is proposed. In the braking mode, the motors operate in series excitation, and the current in the excitation windings is controlled by a DC-DC converter. Keywords: electric motor, excitation windings, electrical braking, energy performance, high frequency converter.


2022 ◽  
Vol 9 ◽  
Author(s):  
Adriana M. Navarro-Suárez ◽  
Milo S. P. Shaffer

Structural energy storage devices (SESDs), designed to simultaneously store electrical energy and withstand mechanical loads, offer great potential to reduce the overall system weight in applications such as automotive, aircraft, spacecraft, marine and sports equipment. The greatest improvements will come from systems that implement true multifunctional materials as fully as possible. The realization of electrochemical SESDs therefore requires the identification and development of suitable multifunctional structural electrodes, separators, and electrolytes. Different strategies are available depending on the class of electrochemical energy storage device and the specific chemistries selected. Here, we review existing attempts to build SESDs around carbon fiber (CF) composite electrodes, including the use of both organic and inorganic compounds to increase electrochemical performance. We consider some of the key challenges and discuss the implications for the selection of device chemistries.


Author(s):  
Chia-Hung Tu ◽  
Chun-Liang Lin ◽  
Meng-Yao Yang ◽  
En-Ping Chen

Recently, design of electric scooters (ESs) has commonly adopted brushless DC motors (BLDCMs) in place of brushed DC motors. This invention develops a new anti-lock braking system (ABS), based on a slip-ratio estimator, for ES utilizing the braking force generated by the BLDCM when electrical energy releases to the load yielding an analogous effect of ABS control in gas-engine vehicles. Comparing to mechanical ABS, the design possesses the advantages of rapid torque responses due to fast actuating response. The electrical ABS is realized by associating with kinematic and Short-circuit braking. A current controller is used to adjust the braking force, while the sliding mode control strategy is adopted to regulate the slip ratio for best road adhesion while braking. Real-world experiments have been conducted for functional and performance verification.


2020 ◽  
Vol 36 (2) ◽  
pp. 121-129
Author(s):  
I.R. Rashitova ◽  
◽  
V.S. Vokhmin ◽  

The article offers a technological scheme of a bioenergy complex for generating heat and electric energy. The main technical solutions that increase the energy performance of a biogas plant are given. The design of a thermoelectric generator for generating electrical energy and heating the coolant for further technological needs is given. The possibility of using the bioenergy complex for energy supply of agricultural enterprises and individual farms in a closed production cycle, as well as the possibility of using the technological scheme of the bioenergy complex in the absence of a centralized source of electric energy is substantiated. The idea was implemented, which is based on the conversion of heat from exhaust gases into electric current in the developed design of a thermoelectric generator.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4000
Author(s):  
Eunhwan Kim ◽  
Juyeon Han ◽  
Seokgyu Ryu ◽  
Youngkyu Choi ◽  
Jeeyoung Yoo

For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte. In this paper, the physicochemical and electrochemical properties of lithium-ion batteries and supercapacitors using ionic liquids (ILs) as an electrolyte are reviewed. Additionally, the energy storage device ILs developed over the last decade are introduced.


2020 ◽  
Vol 10 (3) ◽  
pp. 999
Author(s):  
Hyokyung Bahn ◽  
Kyungwoon Cho

Recently, non-volatile memory (NVM) has advanced as a fast storage medium, and legacy memory subsystems optimized for DRAM (dynamic random access memory) and HDD (hard disk drive) hierarchies need to be revisited. In this article, we explore the memory subsystems that use NVM as an underlying storage device and discuss the challenges and implications of such systems. As storage performance becomes close to DRAM performance, existing memory configurations and I/O (input/output) mechanisms should be reassessed. This article explores the performance of systems with NVM based storage emulated by the RAMDisk under various configurations. Through our measurement study, we make the following findings. (1) We can decrease the main memory size without performance penalties when NVM storage is adopted instead of HDD. (2) For buffer caching to be effective, judicious management techniques like admission control are necessary. (3) Prefetching is not effective in NVM storage. (4) The effect of synchronous I/O and direct I/O in NVM storage is less significant than that in HDD storage. (5) Performance degradation due to the contention of multi-threads is less severe in NVM based storage than in HDD. Based on these observations, we discuss a new PC configuration consisting of small memory and fast storage in comparison with a traditional PC consisting of large memory and slow storage. We show that this new memory-storage configuration can be an alternative solution for ever-growing memory demands and the limited density of DRAM memory. We anticipate that our results will provide directions in system software development in the presence of ever-faster storage devices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Hu ◽  
Xiaomin Tang ◽  
Qing Dai ◽  
Zhiqiang Liu ◽  
Huamin Zhang ◽  
...  

AbstractMembranes with fast and selective ions transport are highly demanded for energy storage devices. Layered double hydroxides (LDHs), bearing uniform interlayer galleries and abundant hydroxyl groups covalently bonded within two-dimensional (2D) host layers, make them superb candidates for high-performance membranes. However, related research on LDHs for ions separation is quite rare, especially the deep-going study on ions transport behavior in LDHs. Here, we report a LDHs-based composite membrane with fast and selective ions transport for flow battery application. The hydroxide ions transport through LDHs via vehicular (standard diffusion) & Grotthuss (proton hopping) mechanisms is uncovered. The LDHs-based membrane enables an alkaline zinc-based flow battery to operate at 200 mA cm−2, along with an energy efficiency of 82.36% for 400 cycles. This study offers an in-depth understanding of ions transport in LDHs and further inspires their applications in other energy-related devices.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1812
Author(s):  
Qin Gang ◽  
Rong-Tsu Wang ◽  
Jung-Chang Wang

A thermoelectric pipe (TEP) is constructed by tubular graphite electrodes, Teflon material, and stainless-steel tube containing polymeric nanofluids as electrolytes in this study. Heat dissipation and power generation (generating capacity) are both fulfilled with temperature difference via the thermal-electrochemistry and redox reaction effects of polymeric nanofluids. The notion of TEP is to recover the dissipative heat from the heat capacity generated by the relevant machine systems. The thermal conductivity and power density empirical formulas of the novel TEP were derived through the intelligent dimensional analysis with thermoelectric experiments and evaluated at temperatures between 25 and 100 °C and vacuum pressures between 400 and 760 torr. The results revealed that the polymeric nanofluids composed of titanium dioxide (TiO2) nanoparticles with 0.2 wt.% sodium hydroxide (NaOH) of the novel TEP have the best thermoelectric performance among these electrolytes, including TiO2 nanofluid, TiO2 nanofluid with 0.2 wt.% NaOH, deionized water, and seawater. Furthermore, the thermal conductivity and power density of the novel TEP are 203.1 W/(m·K) and 21.16 W/m3, respectively.


Sign in / Sign up

Export Citation Format

Share Document