scholarly journals Antibacterial Activities of Volatile oils from mentha Piperia Against Growth of Pathogenic Bacteria

2010 ◽  
Vol 7 (2) ◽  
pp. 977-983
Author(s):  
Baghdad Science Journal

The study included the extraction of volatile oil from Mentha piperita which was 1.3 % in the leaves and flowers . Volatile oil of the Mentha piperita leaves had special aromatic odour, pale yellow color, slightly pungent taste . The specific gravity and refractive index were (0.9794) and ( 1.464) respectively. The inhibition activity of the Mentha piperita Volatile oil extracts were studied on some pathogenic microorganisms like Staphylococcus aureus, Salmonella typhi, Escherichia coli, Proteus sp, and Klebsiella pneumoniae . The result showed that the volatile oil had an inhibition effect on the growth of all microorganisms, and it gave the higher inhibition effect on the growth of S. aureus in which the inhibition zone reached to 25 mm. also the inhibition zoon on the growth of K. pneumoniae was 20 mm.and it was 17 mm. on the growth of Salmonella.typhi , while the effect was slight on the growth of Proteus sp and E. coli 12,10 mm. respectively. The minimum inhibition concentration (MIC) and the minimum bactericidal concentration (MBC) of the volatile oil extract of the Mentha .piperita leaves, were determined. The value of (MIC, MBC) of Staph. aureus was 0.625 , 1.25 % and the value for (MIC, MBC) of K. pneumoniae? Salmonella typhi were 1.25 , 2.5 % for each of them, while the value of (MIC, MBC) of Proteus sp , E. coli were 2.5 , 5 % respectively .

2021 ◽  
Vol 5 (1) ◽  
pp. 436-444
Author(s):  
Sabiu Shitu ◽  
M. Attahiru ◽  
F. A. Iliya

The antibacterial activity of Tokar sha; a local traditional medication widely used by many people in North-west zone of Nigeria especially Sokoto, Kebbi and Zamfara against enteric infections were examined against some clinical isolates of pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Bacillus cereus and Salmonella typhi) using agar well diffusion method. The pattern of inhibition varied with the tokar sha concentrations and the organisms tested. The tokar sha was more effective on E. coli with a maximum zone of growth inhibition of 25mm at 35mg/ml followed by B. cereus (20mm). However, S. aureus and S. typhi were resistant to tokar sha at all concentrations tested. The minimum inhibitory concentrations (MIC) were found to be 35mg/ml for both E. coli and B. cereus. The antibacterial activities exhibited by tokar sha in this study could be attributed to the presence of its constituents which signifies the potential of the tokar sha as a therapeutic agent. These findings may justify the ethnomedicinal use of tokar sha as an antibacterial agent against enterobacteria


2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Bertoka Fajar S.P. Negara ◽  
. Riyanti ◽  
Bintang Marhaeni ◽  
Aradea B. Kusuma

Circulation of synthetic antibacterial chemicals which is used continuously can cause resistance to bacteria. Alternative synthetic antibiotics research then comes up as an urgent need. Recently, the discovery of new antibacterial agents is looking for Actinomycetes. Actinomycetes are one of the active marine bacteria which produce secondary metabolites that could be used as antibacterial. The objective of this study was to evaluate the antibacterial activities of Actinomycetes symbiont with Halimeda macroloba, Gelidiella acerosa, and Turbinaria ornata in Pangandaran beach, Indonesia. A total of 41 Actinomycetes were isolated from 3 species of seaweed. Rep PCR amplification method was used to characterize and identify the relationship between samples. Primer BOX A1R (5’-CTACGGCAAGGCGACGCTGACGCTGACG-3’), 27F (5'-AGTTTGATCMTGGCTCAG-3') and 1492R (5'-TACGGYTACCTTGTTACGACTT-3') was used in amplification 16s DNA. Six isolates from the representative cluster dendogram were selected for secondary metabolites extraction using ethyl acetate solvent, meanwhile agar diffusion method was used as Antibacterial activity assay using E. coli, Proteus sp., and Enterobacter sp. as the bacterial test. The results showed that the activity of secondary metabolite extracts of Actinomycetes symbiont with Halimeda macroloba presented the highest inhibition zone on 3 bacterial tests. In the future, it could be a potential antibacterial agent against animal pathogenic bacteria.


2020 ◽  
Vol 20 (1) ◽  
pp. 94
Author(s):  
Yeni Mariani ◽  
Fathul Yusro ◽  
Evy Wardenaar

Abstrak: Suku Dayak Uud Danum di Kalimantan Barat memanfaatkan daun Ulin (Eusideroxylon zwageri Teijsm & Binn) sebagai tumbuhan obat dalam pengobatan tradisional untuk mengobati berbagai penyakit seperti diare, demam dan penguat badan. Penelitian ini dilakukan untuk menganalisis aktivitas ekstrak metanol dari daun ulin terhadap beberapa jenis bakteri patogen. Daun ulin diekstraksi dengan menggunakan metanol, kemudian diuji dengan metode difusi terhadap empat jenis bakteri yaitu Enterococcus faecalis, Staphylococcus aureus, Salmonella typhi pada empat level konsentrasi (1, 5, 10 dan 15 mg/ml) dan E. coli (50, 100, 150 dan 200 mg/ml). Hasil pengujian memperlihatkan bahwa semua level konsentrasi berpengaruh signifikan terhadap hambatan pertumbuhan bakteri patogen. Semakin tinggi konsentrasi ekstrak metanol daun ulin semakin tinggi diameter hambat yang dihasilkan. Diameter hambat tertinggi ditunjukkan oleh konsentrasi 15 mg/ml pada jenis bakteri S. typhi (12,33 mm) dan E. coli pada konsentrasi 200 mg/ml (22,67 mm). Hasil pengujian membuktikan bahwa daun ulin yang secara tradisional digunakan dalam pengobatan tradisional memiliki potensi sebagai antibakteri alami.Kata kunci: Ulin, antibakteri, Enterococcus faecalis, Staphylococcus aureus, Salmonella typhi, dan Escherichia coli.Abstract: Dayak Uud Danum of West Kalimantan traditionally use ulin leaves (Eusideroxylon zwageri Teisjm & Binn) to cure various diseases namely diarrhea, fever, and tonic. This present study aims to evaluate the activity of methanol extract of ulin leaves against several types of pathogenic bacteria. Ulin leaves were extracted with methanol; thus, the extract resulted tested in terms of disc diffusion Kirby and Bauer against four types of bacteria such as Enterococcus faecalis, Staphylococcus aureus, Salmonella typhi (1, 5, 10, and 15 mg/ml), and Escherichia coli (50, 100, 150, and 200 mg/ml). The results showed that all levels of concentration significantly affect the inhibition growth of pathogenic bacteria. The higher the concentration of methanol extract of ulin leaves used, the higher the inhibition zone produced. The highest response inhibition growth showed from the highest level of 15 mg/ml on S. tyhpi (12.33 mm), and E. coli was 200 mg/ml (22.67 mm). It suggested that the leaves of ulin which traditionally used as medicinal plant have the potency as natural antibacterial agents.Keywords: Ulin, antibacterial, Enterococcus faecalis, Staphylococcus aureus, Salmonella typhi, and Escherichia coli.


Author(s):  
ANNAMALAI MADURAM ◽  
RAJU KAMARAJ

Objectives: The objectives of the study were to study the antibacterial activity for the various extracts of Clausena dentata against human pathogens. Clausena (Rutaceae) is a genus of about 23 species of unarmed trees and shrubs. The stem bark of C. dentata is used in veterinary medicine for the treatment of wounds and sprains. Even though C. dentata has a lot of potential medical uses, the study of microbiological properties is very scarce. Methods: The plant C. dentata was collected from Kadagaman, near Tiruvannamalai, Tamil Nadu, India, and authenticated by Centre for Advanced Study in Botany, University of Madras, Chennai. The dry powder of stem bark was extracted with hexane, chloroform, and methanol. The extracts were subjected to qualitative phytochemical screening and antibacterial activity against human pathogenic bacteria such as Escherichia coli, Salmonella Typhi, Klebsiella pneumonia, Vibrio cholerae, and Staphylococcus aureus and compared with ciprofloxacin. Results: Qualitative chemical tests revealed the presence of various phytochemicals such as alkaloids, glycosides, carbohydrate, proteins and amino acids, phytosterols, and volatile oil. The antibacterial activity result reveals that all the extracts were are more active against V. cholerae. The activity against Pseudomonas aeruginosa was mild. Conclusion: The activity against V. cholerae was comparable with that of 5 μg/mL ciprofloxacin at the concentration of C. dentata 40 μg/mL. The orders of antibacterial activity against human pathogenic bacteria are hexane, methanol, and chloroform extract of C. dentata.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


1970 ◽  
Vol 18 ◽  
pp. 16-20
Author(s):  
BA Omogbai ◽  
FA Eze

Context: Plant based antimicrobial represent a vast untapped source for medicines and further exploration of plant antimicrobial neeto occur. Evolvulus alsinoides (L) (Convolvulaceae) is a perennial herb is used in traditional medicine in East Asia, India, Africa and Philippines to cure fever, cough, cold, venereal diseases, azoospermia, adenitis and dementia.   Objective: The objective of this research was to evaluate the antimicrobial activity of the extracts of E. alsinoides on some clinical microbial isolates.   Materials and Methods: The ed thanolic and aqueous extracts of the whole plant (leaves and twigs) were analysed for alkanoids, tannins, glycosides, steroids, flavonoids, saponins, volatile oil and resins. The determination of antibacterial activity was done using the agar well diffusion technique. Pure cultures of pathogenic bacteria such as Bacillus cereus, Staphylococcus aureus, Micrococcus leutus, Klebsiella Pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi were used for antibacterial activity assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).   Results: The ethanolic extract of the plant had MIC values ranging from 16 mg/ml to 512.5 mg/ml. The least MIC was 16mg-ml against Salmonella typhi while Bacillus cereus and Staphylococcus aureus showed the highest MIC of 512.5 mg-ml. In the aqueous extract the MIC ranged between 512.5 to >1025 mg/ml. Salmonella typhi, Micrococcus luteus and Staphylococcus aureus were not inhibited by the water extract. Phytochemical result showed ethanol to be a better solvent for the extraction of the bioactive agents in this plant which include: glycosides, alkaloids, saponins, tannins, flavonoids and volatile oil.   Conclusion: In this study the gram-negative organisms had the lowest MICs and MBCs. This suggests their higher susceptibility to the extract of this plant. On the basis of the result obtained in this investigation it can be concluded that ethanol extract of Evolvulus alsinoides had significant in vitro broad spectrum antimicrobial activity.   Keywords: Evolvulus alsinoides; Phytochemical screening; Antibacterial activity. DOI: http://dx.doi.org/10.3329/jbs.v18i0.8769 JBS 2010; 18(0): 16-20


2018 ◽  
Vol 10 (3) ◽  
pp. 546-552
Author(s):  
Maria Yasinta Moi ◽  
Endang Kusdiyantini ◽  
Sri Pujiyanto

Endophytic bacteria isolated from some various kind of plants are able to yield some active compounds which have a role as an antibacterial compound. This work aimed to isolate and to screen the Endophytic bacteria from Faloak seed in its charge in inhibiting two kinds of pathogenic bacteria, Staphylococcus aureus and Escherichia coli. There were six isolates of Endophytic bacteria isolated in this work. According to the screening result, one isolate which had the most potential antibacterial activity (marked by the formation of inhibition zone) against S. aureus and E. coli. That most potential isolate was then tested and identified for both biochemical properties and molecular 16S rRNA gene. The result of this study showed that the endophytic bacteria isolate of Faloak seed with the code of S1 had the similarity with Enterobacter xiangfangensis strain 10-17 by 93 %. The research about endophytic bacteria of Faloak plants was never conducted before. Thus this research was expected to give information about the potential of antimicrobial ability Faloak plants which can be utilized in the discovery of new antibiotic compounds which in the future are expected to overcome the problem of microorganism resistance to antibiotics. The use of endophytic bacteria is expected to prevents the extinction of Faloak plants due to excessive use.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Galo Cárdenas-Triviño ◽  
María J. Saludes-Betanzo ◽  
Luis Vergara-González

The nanotechnology is considered as a tool to overcome antibiotic-resistant infections. The aim of this study was to investigate the antibacterial properties of quantum dots (QDs) of Au, Ag, and Cu supported in chitosan against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 29213), and Salmonella Typhi (ATCC 9993) strains. The QDs were synthesized by the method (Chemical Liquid Deposition, CLD) using 2-ethoxyethanol as solvent (1×10−3 M approximate dispersion concentration). Then, NPs supported in chitosan were synthesized by solvated metal atom dispersion (SMAD) in two concentrations, labelled [A] and [B] (0.05 and 0.1 g/L) for each metal with chitosan resulting in an average size of Au 10±2.0, Ag 6±1.3, and Cu 10±2.4 nm, respectively. Several other techniques were performed such as TEM, SEM/EDX, TGA, DSC, and FT-IR for characterizing QDs. The antibacterial assay was performed with 8 agents on cultures of E. coli, S. aureus, and S. Typhi by disk diffusion, broth macrodilution, and determining death curve to the most sensitive pathogen. The antibacterial effect of the nanoparticles was compared using the diameter of growth inhibition zone by agar disk diffusion and through the minimal inhibitory concentration (MIC) and minimal bactericide concentration (MBC) obtained by macrodilution in batch culture with an initial inoculum of 5×105 CFU/mL. The highest bactericidal effect was obtained with nanoparticles of Au, Ag, and Cu (0.1 g/L) with MIC and MBC of 200 and 400 mg/mL, respectively. The greatest bactericidal effect considering the three pathogens turned out to be Ag QDs (0.05 and 0.1 g/L). A bactericidal effect of metal nanoparticles is affected mainly by the electronegativity, the concentration of nanoparticles, and the bacterial age culture.


Author(s):  
Mohammed M Matin ◽  
Mohammad Ibrahim ◽  
Md Shafiqur Rahman

A number of 2,3-di-O-acyl derivatives (6-11) of methyl 4-O-acetyl-a-Lrhamnopyranoside (5) obtained by using various acylating agents were screened for in vitro antifungal activity against four plant pathogenic fungi, viz., Alternaria alternata, Curvularia lunata. Fusarium equiseti and Macrophomina phaseolina. These compounds were also screened for in vitro antibacterial activity against ten human pathogenic bacteria, viz., Bacillus subtilis, Bacillus cereus, Bacillus megaterium, Staphylococcus aureus, Escherichia coli, INABA ET (Vibrio), Pseudomonas species, Salmonella paratyphi, Shigella dysenteriae and Salmonella typhi. The study reveal that these 4-O-acetyl-?-L-rhamnopyranoside derivatives are more prone towards antifungal activities than that of antibacterial activities. DOI: http://dx.doi.org/10.3329/cujbs.v3i1.13404 The Chittagong Univ. J. B. Sci.,Vol. 3(1&2):33-43, 2008


2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2093693
Author(s):  
William F. Feudjou ◽  
Arnaud M. Mbock ◽  
Marlyse B. W. Ouahouo ◽  
Valérie T. Sielinou ◽  
Racéline K. Gounoue ◽  
...  

A new isovaleronitrile diglycoside, named microcarposide (1), together with 6 known compounds: lupeol (2), betulinic acid (3), β-sitosterol glucoside (4), methyl gallate (5), luteolin (6), and epicatechin (7), was isolated from the methanolic extract of the fruits of Detarium microcarpum Guill. Perr. The structures of the compounds were determined by extensive analysis of 1D- and 2D-1H and 13C NMR spectroscopic data in conjunction with mass spectrometry and by comparison with data reported in the literature. Compound 1 was characterized as (2 R)-2-[(6″- O-β-l-rhamnopyranosyl-β-d-glucopyranosyl)oxy]-3-methylbutanenitrile. Some of the isolated compounds were evaluated for their antibacterial activities against several microorganisms; only compound 1 was active against Salmonella typhi, Salmonella enteritidis, and Salmonella typhimurium with minimum inhibition concentration values of 153.4, 76.7, and 76.7 μM, respectively.


Sign in / Sign up

Export Citation Format

Share Document