Solubility of Silica in Alkaline Solutions: Implications for Alkaline Flooding

1985 ◽  
Vol 25 (06) ◽  
pp. 857-864 ◽  
Author(s):  
J.G. Southwick

Abstract The expected loss of useful alkalinity caused by, the slow dissolution of silica from pure quartz sand is shown for some typical alkaline flooding solutions (about 1 % NAOH or 1.25% sodium orthosilicate) to be only about 10 to 20%. This conclusion is based on the observation that alkaline solutions equilibrate with quartz and on the methodology proposed here for determining the useful alkalinity of a solution. Furthermore, the dissolution of quartz in alkaline flooding can be eliminated by the use of solutions saturated in silica with respect to quartz. Such formulations may be useful in controlling the erosion of the wellbore and gravel pack. Introduction Research results emphasize the importance of silica dissolution reactions, both in steamflooding and in alkaline flooding. Rapid dissolution of silica can quickly form a large cavity adjacent to the injection well. In unconsolidated reservoir sands, this cavity could collapse and produce lateral stresses that sever the well casing. Furthermore, for alkaline flooding it is uncertain whether alkaline pulses can propagate through reservoir sands before hydroxide concentrations drop to ineffective levels. Although many mechanisms that consume alkali exist in the reservoir, a recent paper by Bunge and Radke proposed that the slow silica dissolution reaction is of primary proposed that the slow silica dissolution reaction is of primary importance. When scaled to reservoir residence times, their calculations for the dissolution of silica by alkali predict dire conclusions: for many practical well predict dire conclusions: for many practical well spacings and flow rates, hydroxide concentrations drop to ineffective levels after - 15% of the interwell distance is traversed. Important assumptions inherent in their calculations are thatthe dissolution of silica by hydroxide can be treated as an irreversible reaction because the solubility of amorphous silica is not approached, which allows short-term dissolution rates to be extrapolated to reservoir times, andloss of hydroxide ion concentration (or pH,) with time is the critical parameter in estimating alkaline-pulse migration. In this paper, alkaline dissolution experiments are performed with a pure quartz sand. A methodology is performed with a pure quartz sand. A methodology is proposed for estimating the amount of useful alkalinity lost proposed for estimating the amount of useful alkalinity lost because of silica dissolution, and estimates for wellbore erosion are given. It is not the intent of this paper to determine the total alkaline consumption for reservoir sands. Consumption reactions important for reservoir sands such as precipitation of alkali by multivalent cations, and clay transformations-are not considered. However, discussions of the effect that clay minerals and cation precipitation might have on silica dissolution are presented. precipitation might have on silica dissolution are presented. Experimental Procedure Static bottle experiments in which quartz sand is contacted with alkaline solution are used to study silica dissolution. A basic argument in this paper is that the accumulation of silica in alkaline solution during storage with sand at elevated temperatures mimics silica accumulation in a given fluid element as the fluid propacates through the reservoir sand. Two assumptions are inherent in this statement: fluid flow at reservoir rates ft/D f - 0. 3 m/d]) has no effect on the chemical reaction of alkali with solid silica. and the surface area of sand in the static bottle tests does not drop significantly as dissolution proceeds. The first assumption is certainly reasonable, but the second deserves comment. Subsequent results show that the maximum silica dissolution observed in these experiments corresponds to only 0.5% of the quartz sand present in the bottles. Assuming spheres, such a dissolution reduces the surface area of sand grains by about 0.4%; thus the second assumption is also valid. This experimental approach is to determine the changes in soluble silica concentration and alkalinity with increasing time. For this pure quartz sand, soluble silica accumulations can be related directly to reaction rates. (In the absence of clays, aluminum is not present to cause the precipitation of silica in the form of aluminosilicate precipitation of silica in the form of aluminosilicate minerals.) Acid titrations of the alkaline solutions can be particularly useful because they reveal the effects that soluble particularly useful because they reveal the effects that soluble silica has on total alkalinity and buffering capacity. Methods Static Bottle Tests. For static bottle tests, 75 quartz sand (Clemtex No. 5, - 100 mesh) was stored with 33 g of alkaline solution in tightly sealed Teflon bottles at constant temperature. Special inserts were fabricated and placed in the necks of the bottles to [minimize vapor loss. placed in the necks of the bottles to [minimize vapor loss. The bottles were not agitated during storage because sufficient mixing is accomplished by Brownian diffusion and because agitation results in the abrasion or grinding of the sand grains, a phenomenon not encountered in reservoir flooding. Calculations show that Brownian diffusion completely distributes concentration changes caused by silica dissolution through the aqueous phase in 3 days. SPEJ P. 857

2020 ◽  
pp. 179-181
Author(s):  
A.A. Abrashov A.A. ◽  
E.G. Vinokurov ◽  
M.A. Egupova ◽  
V.D. Skopintsev

The technological (deposition rate, coating composition) and functional (surface roughness, microhardness) characteristics of chemical composite coatings Ni—Cu—P—Cr2O3 obtained from weakly acidic and slightly alkaline solutions are compared. It is shown that coatings deposited from slightly alkaline solution contain slightly less phosphorus and chromium oxide than coatings deposited from weakly acid solution (2...3 % wt. phosphorus and up to 3.4 % wt. chromium oxide), formed at higher rate (24...25 microns per 1 hour of deposition at temperature of 80 °C), are characte rized by lower roughness and increased microhardness. The Vickers microhardness at 0.05 N load of composite coatings obtained from slightly alkaline solution and heat-treated at 400 °C for 1 hour is 13.5...15.2 GPa, which is higher than values for coatings deposited made of weakly acidic solution. The maximum microhardness of coatings is achieved at concentration 20 g/l of Cr2O3 particles. The technology of chemical deposition of Ni—Cu—P—Cr2O3 coatings formed in slightly alkaline solution is promising for obtaining of materials with increased hardness and wear resistance.


2011 ◽  
Vol 130-134 ◽  
pp. 856-859
Author(s):  
Chun Sheng Ding ◽  
Yang Ping Fu ◽  
Qian Fen Zhu ◽  
Jing Fu

In this experiment quartz sand was chosen as a carrier to be coated by aluminous salt under alkaline condition, and then the specific surface area was tested, and the adsorption capability and Cd2+ removal influencing factors of modified sand were studied. The investigation results showed that the specific surface area of modified sand was 75.244m2/g which was 9.38 times of that of original sand; the removal efficiency of Cd2+ by aluminous salt modified sand reached 59% contrast to 39% of original sand with pH 7.00. It was also found that the removal efficiency of Cd2+ by the aluminous salt modified sand was reduced with the increase of initial concentration of Cd2+ solution, and was enhanced with the increase of pH value, the Cd2+ removal efficiency was almost 71% with pH 9.0.


2019 ◽  
Vol 89 ◽  
pp. 04004
Author(s):  
T. Chevalier ◽  
J. Labaume ◽  
A. Delbos ◽  
T. Clemens ◽  
V. M. Waeger ◽  
...  

Spontaneous imbibition processes can play an important role in oil production. It can be enhanced or influenced by wettability changes generated by properly designed chemicals or by the natural surfactants resulting from reactive crude oils in the presence of alkaline solutions. The reaction of basic salts with some components of oil can, indeed, lead to the formation of natural soaps that reduces the interfacial tension between oil and brine. The latter scenario is studied herein on samples and oil from the St Ulrich oil field in the Vienna basin. To that end, spontaneous imbibition experiments were performed with two brines differing by the absence or presence of alkali. We first present a general novel technique to monitor saturation changes on small rock samples for the purpose of assessing the efficiency of a given recovery process. Samples of only 15 mm in diameter and 20 mm in length and set at irreducible saturation were fully immersed in the solution of interest, and the evolution of the samples’ saturation with time was monitored thanks to a dedicated NMR technique involving the quantification of the sole oil phase present within the sample. A fully-3D imbibition configuration was adopted, involving counter-current flows through all faces of the sample. The experimental method is fast for two reasons: (i) the kinetics of capillary imbibition process is proportional to the square of sample size, i.e. very rapid if accurate measurements can be acquired on tiny samples, (ii) the present 3D situation also involves faster kinetics than the 1D configuration often used. The NMR technique was crucial to achieve such conditions that cannot be satisfied with conventional volumetric methods. The kinetics of oil desaturation during spontaneous imbibition is interpreted with the help of an analytical 3D diffusion model. For the alkaline solution, the diffusion coefficient is reduced by a factor of only two compared to the non-alkaline brine, although the interfacial tension between the oil and the imbibing solution is reduced by a factor of 10. Hence, a wettability change to a more water wet state has to be assumed when the alkaline solution replaces the non-alkaline solution in the imbibition process. However, no significant impact on the final saturation was observed.


2011 ◽  
Vol 1333 ◽  
Author(s):  
Krzysztof Fic ◽  
Grzegorz Lota ◽  
Elzbieta Frackowiak

ABSTRACTEffect of surfactants present in alkaline solutions on the capacitance of carbon electrodes has been studied. Different types of surfactants have been selected for this target. Concentration of these electrolyte additives was 0.005 mol L-1. Decreasing the surface tension in the electrode/electrolyte interface allows better penetration of electrolyte into the pores. Detailed analysis of capacitance versus current load, frequency dependence as well as self-discharge, cyclability and behaviour in wider voltage window proved a useful effect of Triton X-100 on capacitor operating in alkaline solution. Influence of surfactant concentration has also been investigated.


RSC Advances ◽  
2015 ◽  
Vol 5 (21) ◽  
pp. 15923-15929 ◽  
Author(s):  
N. R. Elezovic ◽  
V. R. Radmilovic ◽  
J. Kovac ◽  
B. M. Babic ◽  
Lj. M. Gaijic-Krstajic ◽  
...  

High stability Pt catalyst on Sb doped SnO2 support for oxygen reduction in alkaline solution.


2012 ◽  
Vol 15 (4) ◽  
pp. 255-263 ◽  
Author(s):  
I. Danaee ◽  
M. Jafarian ◽  
A.A. Shahnazi Sangachin ◽  
F. Gobal

Electrodes made of group VIII and IB metals were examined for their redox process and electrocatalytic activities towards the oxidation of ethylene glycol in alkaline solutions. The method of cyclic voltammetery (CV) and Open circuit potentials measurement (OCP) was employed. It is found that considerable electrooxidation current are observed for silver and copper but lower anodic overpotential for oxidation is obtained for gold and platinum. Oxide layer produced on the surface of all electrodes in alkaline solution under anodic scan participates in ethylene glycol electrooxidation. Oxidation current observed in the reverse scans for platinum and gold are higher than those observed in forward potential scan. Open circuit potential measurements have shown the interaction of ethylene glycol and electrodes.


RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 78737-78742 ◽  
Author(s):  
Yu Jiang ◽  
Yan Xie ◽  
Xinxin Jin ◽  
Qi Hu ◽  
Li Chen ◽  
...  

FePc-based porous carbon materials with large surface area exhibit excellent oxygen reduction reaction activity in alkaline solution. Such electrocatalyst favors nearly four electron reduction of oxygen to water, similar to commercial Pt/C.


1978 ◽  
Vol 56 (3) ◽  
pp. 336-342 ◽  
Author(s):  
Remigio Germano Barradas ◽  
Stephen Fletcher ◽  
John Douglas Porter

The electrochemical formation of mercuric oxide on mercury in alkaline solutions is described. The reaction was investigated because of its importance as a reference electrode system, and also because it provides a model test of recent theoretical developments. Various derived data are compared to computer simulations of the growth mechanism.


1998 ◽  
Vol 52 (7) ◽  
pp. 963-969 ◽  
Author(s):  
Jean-Joseph Max ◽  
Camille Chapados

The IR spectrum of a sample in acidic and alkaline solutions cannot be retrieved adequately when only the spectrum of pure water is subtracted. After such an operation, some water bands remain in the spectrum, which also has a distorted baseline. An analysis of a series of IR spectra of HCl and NaOH solutions showed that they could be represented by two pairs of eigenspectra, one pair for the acidic solutions and the other for the basic solutions. The fraction of each eigenspectrum of a sample in an acidic or alkaline solution is determined with the 2100 and 3300 cm−1 water bands. After subtraction, no baseline adjustment is necessary. The effectiveness of the method used to subtract the water bands is illustrated with solutions of malic acid at low and high pH.


1957 ◽  
Vol 35 (5) ◽  
pp. 477-487 ◽  
Author(s):  
G. F. Atkinson ◽  
W. A. E. McBryde

The analytical reagent "tiron" undergoes oxidation in alkaline solution by the oxygen of the atmosphere to a yellow-colored substance, which is assumed to be the corresponding quinone. In certain circumstances the reagent may be oxidized with production of a green substance believed to be a semiquinone. Interference in the colorimetric determination of iron by means of this reagent may occur in alkaline solution owing to the overlap of the iron III derivative and of the oxidation product. Alkaline solutions of tiron react with iron II salts even in the rigorous absence of oxygen to form the iron III tironate FeR3−9. Oxygenated solutions of tiron in alkali fail to produce this compound with iron III salts, but do so with iron II salts.


Sign in / Sign up

Export Citation Format

Share Document