scholarly journals Genome-wide analysis of gibberellin-dioxygenases genes in rice

2019 ◽  
Author(s):  
Wei Liu ◽  
Jishuai Huang ◽  
Yanghong Xu ◽  
Qiannan Zhang ◽  
Jun Hu

Abstract Background Gibberellins (GAs), a pivotal plant hormone, play fundamental roles in plant development and growth. In rice, gibberellin-dioxygenases (GAoxes), OsGA20ox, OsGA3ox and OsGA2ox, are involved in the biosynthesis and deactivation of gibberellins. However, a comprehensive genome-wide analysis of gibberellin-dioxygenases genes is still uncovered.Results In this study, a total of 95 candidate OsGAox genes were found and 19 OsGAox genes were further analyzed. Results of phylogenetic tree showed that the OsGAox genes in Arabidopsis and rice were divided into four subgroups and shared some common features. Furthermore, analysis of gene structure and conserved motifs revealed that splicing phase and motifs were well conserved during the evolution of GAox genes in Arabidopsis and rice, and some specific motifs still need to be further studied. Exploration of expression profiles indicated that most of OsGAox genes exhibited tissue-specific expression patterns, implied their complicated functions. Moreover, the expression patterns of these genes under GA 3 and PAC treatment were investigated, and result showed that some genes, OsGA2ox3, OsGA2ox5, OsGA2ox7, OsGA2ox9, OsGA20ox2, and OsGA20ox4, may play a major role in GA homeostasis to cope with exogenous GA.Conclusions Our study provided a comprehensive analysis of the OsGAox gene family. Splicing characteristics and conserved motifs indicated the evolutionary conserved function in plants. Expression profiles indicated that each OsGAox gene has complicated and special functions. Although plenty of GAoxes were involved in the endogenous GA metabolism, only some of them acted in response to the exogenous GA treatment, which provided available information for researchers to manipulate the chemical GAs to improve the plant architecture and production.

Genome ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Chenghao Zhang ◽  
Wenqi Dong ◽  
Zong-an Huang ◽  
MyeongCheoul Cho ◽  
Qingcang Yu ◽  
...  

Auxin plays key roles in regulating plant growth and development as well as in response to environmental stresses. The intercellular transport of auxin is mediated by the following four gene families: ATP-binding cassette family B (ABCB), auxin resistant1/like aux1 (AUX/LAX), PIN-formed (PIN), and PIN-like (PILS). Here, the latest assembled pepper (Capsicum annuum L.) genome was used to characterise and analyse the CaLAX and CaPIN gene families. Genome-wide investigations into these families, including chromosomal distributions, phytogenic relationships, and intron/exon structures, were performed. In total, 4 CaLAX and 10 CaPIN genes were mapped to 10 chromosomes. Most of these genes exhibited varied tissue-specific expression patterns assessed by quantitative real-time PCR. The expression profiles of the CaLAX and CaPIN genes under various abiotic stresses (salt, drought, and cold), exogenous phytohormones (IAA, 6-BA, ABA, SA, and MeJA), and polar auxin transport inhibitor treatments were evaluated. Most CaLAX and CaPIN genes were altered by abiotic stress at the transcriptional level in both shoots and roots, and many CaLAX and CaPIN genes were regulated by exogenous phytohormones. Our study helps to identify candidate auxin transporter genes and to further analyse their biological functions in pepper development and in its adaptation to environmental stresses.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


2020 ◽  
Vol 21 (19) ◽  
pp. 7180
Author(s):  
Hongfeng Wang ◽  
Hongjiao Jiang ◽  
Yiteng Xu ◽  
Yan Wang ◽  
Lin Zhu ◽  
...  

Gibberellins (GAs), a class of phytohormones, act as an essential natural regulator of plant growth and development. Many studies have shown that GA is related to rhizobial infection and nodule organogenesis in legume species. However, thus far, GA metabolism and signaling components are largely unknown in the model legume Medicago truncatula. In this study, a genome-wide analysis of GA metabolism and signaling genes was carried out. In total 29 components, including 8 MtGA20ox genes, 2 MtGA3ox genes, 13 MtGA2ox genes, 3 MtGID1 genes, and 3 MtDELLA genes were identified in M. truncatula genome. Expression profiles revealed that most members of MtGAox, MtGID1, and MtDELLA showed tissue-specific expression patterns. In addition, the GA biosynthesis and deactivation genes displayed a feedback regulation on GA treatment, respectively. Yeast two-hybrid assays showed that all the three MtGID1s interacted with MtDELLA1 and MtDELLA2, suggesting that the MtGID1s are functional GA receptors. More importantly, M. truncatula exhibited increased plant height and biomass by ectopic expression of the MtGA20ox1, suggesting that enhanced GA response has the potential for forage improvement.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Su ◽  
Ali Raza ◽  
Liu Zeng ◽  
Ang Gao ◽  
Yan Lv ◽  
...  

Abstract Background Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). Results In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. Conclusions This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Li ◽  
Keyun Lin ◽  
Shuai Zhang ◽  
Jian Wu ◽  
Yujie Fang ◽  
...  

Myeloblastosis (MYB)-related transcription factors comprise a large subfamily of the MYB family. They play significant roles in plant development and in stress responses. However, MYB-related proteins have not been comprehensively investigated in rapeseed (Brassica napus L.). In the present study, a genome-wide analysis of MYB-related transcription factors was performed in rapeseed. We identified 251 Brassica napus MYB (BnMYB)-related members, which were divided phylogenetically into five clades. Evolutionary analysis suggested that whole genome duplication and segmental duplication events have played a significant role in the expansion of BnMYB-related gene family. Selective pressure of BnMYB-related genes was estimated using the Ka/Ks ratio, which indicated that BnMYB-related genes underwent strong purifying selection during evolution. In silico analysis showed that various development-associated, phytohormone-responsive, and stress-related cis-acting regulatory elements were enriched in the promoter regions of BnMYB-related genes. Furthermore, MYB-related genes with tissue or organ-specific, stress-responsive expression patterns were identified in B. napus based on temporospatial and abiotic stress expression profiles. Among the stress-responsive MYB-related genes, BnMRD107 was strongly induced by drought stress, and was therefore selected for functional study. Rapeseed seedlings overexpressing BnMRD107 showed improved resistance to osmotic stress. Our findings not only lay a foundation for further functional characterization of BnMYB-related genes, but also provide valuable clues to determine candidate genes for future genetic improvement of B. napus.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246021
Author(s):  
QingHua Li ◽  
XianTao Yu ◽  
Long Chen ◽  
Gang Zhao ◽  
ShiZhou Li ◽  
...  

Abscisic acid (ABA) is an important plant hormone that plays multiple roles in regulating growth and development as well as in stress responses in plants. The NCED gene family includes key genes involved in the process of ABA synthesis. This gene family has been found in many species; however, the function of the NCED gene family in cotton is unclear. Here, a total of 23 NCED genes (designated as GhNCED1 to GhNCED23) were identified in cotton. Phylogenetic analysis indicated that the identified NCED proteins from cotton and Arabidopsis could be classified into 4 subgroups. Conserved motif analysis revealed that the gene structure and motif distribution of proteins within each subgroup were highly conserved. qRT-PCR and ABA content analyses indicated that NCED genes exhibited stage-specific expression patterns at tissue development stages. GhNCED5, GhNCED6 and GhNCED13 expression was similar to the change in ABA content, suggesting that this gene family plays a role in ABA synthesis. These results provide a better understanding of the potential functions of GhNCED genes.


2021 ◽  
Author(s):  
Siwen Liu ◽  
Bangting Wu ◽  
Yanling Xie ◽  
Sijun Zheng ◽  
Jianghui Xie ◽  
...  

Abstract Potassium is one of the most essential inorganic cations for plant growth and development. The high affinity K+ (HAK)/K+ uptake (KUP)/K+ transporter (KT) family plays essential roles in the regulation of cellular K+ levels and the maintenance of osmotic balance. However, the roles of these genes in the responses of bananas to low-potassium stress are unclear. In this study, 24 HAK/KUP/KT (MaHAK) genes were identified from banana genomic data. These genes were further classified into four groups based on phylogenetic analysis, gene structure and conserved domain analysis. Segmental duplication events played an important role in the expansion of the MaHAK gene family. Transcriptome analysis revealed the expression patterns of MaHAKs in various tissues under different K+ conditions. MaHAK14b was upregulated under both short- and long-term K+-deficient conditions, suggesting that it plays crucial roles in K+ uptake at low K+ concentrations. Furthermore, MaHAK14b mediated K+ uptake when it was heterologously expressed in the yeast mutant R5421 on low K+ medium. Collectively, these findings provide a foundation for further functional analysis of MaHAK genes, which may be used to improve stress resistance in bananas.


2021 ◽  
Vol 22 (10) ◽  
pp. 5291
Author(s):  
Shengnan Song ◽  
Jun You ◽  
Lisong Shi ◽  
Chen Sheng ◽  
Wangyi Zhou ◽  
...  

The biosynthesis and storage of lipids in oil crop seeds involve many gene families, such as nonspecific lipid-transfer proteins (nsLTPs). nsLTPs are cysteine-rich small basic proteins essential for plant development and survival. However, in sesame, information related to nsLTPs was limited. Thus, the objectives of this study were to identify the Sesamum indicum nsLTPs (SiLTPs) and reveal their potential role in oil accumulation in sesame seeds. Genome-wide analysis revealed 52 SiLTPs, nonrandomly distributed on 10 chromosomes in the sesame variety Zhongzhi 13. Following recent classification methods, the SiLTPs were divided into nine types, among which types I and XI were the dominants. We found that the SiLTPs could interact with several transcription factors, including APETALA2 (AP2), DNA binding with one finger (Dof), etc. Transcriptome analysis showed a tissue-specific expression of some SiLTP genes. By integrating the SiLTPs expression profiles and the weighted gene co-expression network analysis (WGCNA) results of two contrasting oil content sesame varieties, we identified SiLTPI.23 and SiLTPI.28 as the candidate genes for high oil content in sesame seeds. The presumed functions of the candidate gene were validated through overexpression of SiLTPI.23 in Arabidopsis thaliana. These findings expand our knowledge on nsLTPs in sesame and provide resources for functional studies and genetic improvement of oil content in sesame seeds.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong Nan ◽  
Richard A. Ludlow ◽  
Min Lu ◽  
Huaming An

Dof (DNA binding with one finger) proteins play important roles in plant development and defense regulatory networks. In the present study, we report a genome-wide analysis of rose Dof genes (RchDof), including phylogenetic inferences, gene structures, chromosomal locations, gene duplications, and expression diversity. A total of 24 full-length RchDof genes were identified in Rosa chinensis, which were assigned to nine distinct subgroups. These RchDof genes were unevenly distributed on rose chromosomes. The genome-scale analysis of synteny indicated that segmental duplication events may have played a major role in the evolution of the RchDof gene family. Analysis of cis-acting elements revealed putative functions of Dofs in rose during development as well as under numerous biotic and abiotic stress conditions. Moreover, the expression profiles derived from qRT-PCR experiments demonstrated distinct expression patterns in various tissues, and gene expression divergence existed among the duplicated RchDof genes, suggesting a fundamentally functional divergence of the duplicated Dof paralogs in rose. The gene expression analysis of RchDofs under drought and salt stress conditions was also performed. The present study offered novel insights into the evolution of RchDofs and can aid in the further functional characterization of its candidate genes.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 850
Author(s):  
Penglei Wang ◽  
Zhuanzhuan Yan ◽  
Xifang Zong ◽  
Qi Yan ◽  
Jiyu Zhang

The DNA-binding with one zinc finger (Dof) family of plant-specific transcription factors has a variety of important functions in gene transcriptional regulation, development, and stress responses. However, the structure and expression patterns of Dof family have not been identified in Cleistogenes songorica, which is an important xerophytic and perennial gramineous grass in desert grassland. In this study, 50 Dof genes were identified in C. songorica and could be classified into four groups. According to genome-wide analysis, 46 of 50 Dof genes were located on 20 chromosomes, and the gene structure and conserved protein motif of these proteins were analyzed. In addition, phylogenetic analysis of Dof genes in C. songorica, Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon estimated the evolutionary relationships, and these genes were grouped into seven clusters. Moreover, the expression profiles of these Dof genes in C. songorica were analyzed in response to high/low temperature, salinity, and ABA treatments. These results will provide valuable information for future studies on gene classification, cloning, and functional characterization of this family in C. songorica.


Sign in / Sign up

Export Citation Format

Share Document