scholarly journals IR783 Encapsulated in TR-conjugated Liposomes for Enhancing NIR Imaging-guided Photothermal and Photodynamic Therapy

Author(s):  
Jiajia Lv ◽  
Tianjiao Luan ◽  
Mingyan Yang ◽  
Mengmeng Wang ◽  
Jie Gao ◽  
...  

Abstract We developed an integrin αvβ3-specific liposomes, TR-conjugated liposomes (TR-LPs), loading IR783 for NIR imaging-guided both PTT and PDT. The TR-LPs was composed of soyabeanphosphatidylcholine, cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine- N- [methoxy(polyethylene glycol)-2000] (DSPE-PEG) and TR-functionalized DSPE-PEG. IR783, NIR PTT/PDT diagnostic agents, were encapsulated in the hydrophilic core of the TR-LPs. DSPE-PEG had ability of reducing the absorption of TR-LPs by the reticuloendothelial system and increase the cycle time in body. RGD fragment on the TR peptide (TR = c(RGD)-AGYLLGHINLHHLAHL(Aib)HHIL-cys) enhanced the tumor selectivity of liposomes by specifically targeting integrin αvβ3-overexpressing cancer cells. Simultaneously, the rest of fragment on the TR peptide can be changed to the positive charge in the tumor microenvironment (pH 6.5), improving cellular uptake of photoagents at tumor site. We executed a set of in vitro and in vivo experiments to verify if, by functionalizing liposomes with an integrin αvβ3-specific and pH responding peptide, it is possible to achieve NIR imaging guided PTT/PDT for tumor treatment. TR-conjugated liposomes exhibited favorable physical and chemical stability, loading capacity, biocompatibility and tumor targeting. TR-LPs can safely and efficiently delivery IR783 to tumor sites to achieve their therapeutic function. IR783-TR-LPs is promising as a potentially safe and effective phototherapeutic agents for NIR fluorescence-guided tumor therapy applications.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1593
Author(s):  
Min Yang ◽  
Xiaohui Wang ◽  
Fang Pu ◽  
Ying Liu ◽  
Jia Guo ◽  
...  

Exosomes, as natural nanovesicles, have become a spotlight in the field of cancer therapy due to their reduced immunogenicity and ability to overcome physiological barriers. However, the tumor targeting ability of exosomes needs to be improved before its actual application. Herein, a multiple targeted engineered exosomes nanoplatform was constructed through rare earth element Gd and Dy-doped and TAT peptide-modified carbon dots (CDs:Gd,Dy-TAT) encapsulated into RGD peptide engineered exosomes (Exo-RGD), which were used to enhance the effect of cancer imaging diagnosis and photothermal therapy. In vitro and in vivo experiments showed that the resulting CDs:Gd,Dy-TAT@Exo-RGD could effectively accumulate at cancer site with an increased concentration owing to the targeting peptides modification and exosomes encapsulation. The tumor therapy effects of mice treated with CDs:Gd,Dy-TAT@Exo-RGD were heightened compared with mice from the CDs:Gd,Dy control group. After intravenous injection of CDs:Gd,Dy-TAT@Exo-RGD into tumor-bearing mice, the temperature of tumors rose to above 50 °C under NIR irradiation and the localized hyperpyrexia induced by CDs could remarkably ablate tumors. The survival rate of the mice was 100% after 60 days. In addition, the CDs:Gd,Dy-TAT@Exo-RGD exhibited higher MRI/CT imaging contrast enhancement of tumor sites than that of CDs:Gd,Dy. Our study identified that engineered exosomes are a powerful tool for encapsulating multiple agents to enhance cancer theranostic efficiency and provide insight into precise personalized nanomedicine.


2021 ◽  
Author(s):  
Yang Li ◽  
Ping Hu ◽  
Xiali Wang ◽  
Xu Hou ◽  
Fengzhen Liu ◽  
...  

Abstract Photothermal therapy (PTT) has emerged as a promising cancer therapeutic method. In this study, Arg-Gly-Asp (RGD) peptide-conjugated polydopamine-coated gold nanostars (Au@PDA-RGD NPs) were prepared for targeting PTT of hepatocellular carcinoma (HCC). A polydopamine (PDA) shell was coated on the surface of gold nanostars by the oxidative self-polymerization of dopamine (termed as Au@PDA NPs). Au@PDA NPs were further functionalized with polyethylene glycol (PEG) and RGD peptide to improve biocompatibility as well as selectivity toward the HCC cells. Au@PDA-RGD NPs showed an intense absorption at 822 nm, which makes them suitable for NIR-excited PTT. Our results indicated that the Au@PDA-RGD NPs were effective for the PTT therapy of the αVβ3 integrin receptor-overexpressed HepG2 cells in vitro. Further antitumor mechanism studies showed that the Au@PDA-RGD NPs-based PTT induced human liver cancer cells death via the mitochondrial-lysosomal and autophagy pathways. In vivo experiments showed that Au@PDA-RGD NPs had excellent tumor treatment efficiency and negligible side effects. Thus, our study showed that Au@PDA-RGD NPs could offer an excellent nanoplatform for PTT of HCC.


2021 ◽  
Author(s):  
Juan Du ◽  
Lanlan Zong ◽  
Mengmeng Li ◽  
Yonghui Qiao ◽  
Keke Yu ◽  
...  

Abstract Cancerous tumors are still a major disease that threatens human life, with tumor multidrug resistance (MDR) being one of the main reasons for the failure of chemotherapy. Here, a reduction-sensitive polymer prodrug micelle, mPEG-DCA-SS-PTX (PDSP), was manufactured with a new polymer inhibitor of drug-resistance as a carrier to overcome MDR and improve the anti-tumor effect of paclitaxel (PTX). The PDSP micelles display good stability, double-responsive drug release, and excellent biocompatibility. The PDSP micelles reduced the cytotoxicity of PTX to normal HL-7702 cells, and enhanced that to SMMC-7721 and MCF-7 cells in vitro. Improved sensitivity of A549/ADR to PDSP was also observed in vitro. Furthermore, in vivo experiments show reduced systemic toxicity and enhanced therapeutic efficacy of DOX to H22 subcutaneous tumor-bearing mice. This work proves the reduction sensitive polymer prodrug micelles carried by the new polymer inhibitor can be used as an alternative delivery system to target tumors and reverse MDR for paclitaxel and other tumor-resistant drugs.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hang Wu ◽  
Qi Jiang ◽  
Keyi Luo ◽  
Chunping Zhu ◽  
Mengmeng Xie ◽  
...  

AbstractThe combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has attracted attention due to its enhanced tumor therapy effect. This study proposes a novel nanoenzyme-based theranostic nanoplatform, IrO2@MSN@PDA-BSA(Ce6), for the combined PTT and PDT of tumors. IrO2 was prepared by a simple hydrolysis method and coated with a thin layer of mesoporous silica (MSN) to facilitate the physical adsorption of Chlorin e6 (Ce6). The PDA coating and IrO2 NPs of the nanoplatform demonstrated an improved photothermal conversion efficiency of 29.8% under NIR irradiation. Further, the Ce6 loading imparts materials with the ability to produce reactive oxygen species (ROS) under 660 nm NIR laser irradiation. It was also proved that the IrO2 NPs could catalyze the hydrogen peroxide (H2O2) in the tumor microenvironment (TME) to generate endogenous oxygen (O2), thereby enhancing the efficiency of PDT. The in vitro and in vivo experiments indicated that the nanocomposite was highly biocompatible and could produce a satisfactory tumor therapeutic effect. Thus, the findings of the present study demonstrate the viability of using theranostic nanoenzymes for translational medicine.


1969 ◽  
Vol 22 (03) ◽  
pp. 496-507 ◽  
Author(s):  
W.G van Aken ◽  
J Vreeken

SummaryCarbon particles cause platelet aggregation in vitro and in vivo. Prior studies established that substances which modify thrombocyte aggregation also influence the rate at which carbon is cleared from the blood.This study was performed in order to elucidate the mechanism by which the carbon-platelet aggregates specifically accumulate in the RES.Activation of fibrinolysis by urokinase or streptokinase reduced the carbon clearance rate, probably due to generated fibrinogen degradation products (FDP). Isolated FDP decreased the carbon clearance and caused disaggregation of platelets and particles in vitro. Inhibition of fibrinolysis by epsilon-amino-caproic acid (EACA), initially accelerated the disappearance of carbon and caused particle accumulation outside the RES, predominantly in the lungs. It is supposed that platelet aggregation and locally activated fibrinolysis act together in the clearance of particles. In the normal situation the RES with its well known low fibrinolytic activity, becomes the receptor of the particles.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2018 ◽  
Vol 24 (15) ◽  
pp. 1639-1651 ◽  
Author(s):  
Xian-ling Qian ◽  
Jun Li ◽  
Ran Wei ◽  
Hui Lin ◽  
Li-xia Xiong

Background: Anticancer chemotherapeutics have a lot of problems via conventional Drug Delivery Systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: “passive”, “active”, and “smart” targeting. Objective: To summarize the mechanisms of various internal and external “smart” stimulating factors on the basis of findings from in vivo and in vitro studies. Method: A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Results: Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), “smart” DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. Conclusion: In this review article, we summarize and classify the internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document