scholarly journals Morphology and Size Distribution of Naturally Occurring Asbestos using TEM in Landscape Rock in Parks

Author(s):  
Sook-Nye Chung ◽  
Jisung Kim ◽  
Gikyo Im ◽  
Sunjung Won ◽  
Jiyoung Lee ◽  
...  

Abstract BackgroundAsbestos is a silicate mineral that is naturally generated by geological processes in the Earth's crust. The six types of commercially used asbestos each display the asbestiform crystal habit that is characterized by fibrous aggregates of extremely long, thin crystals. This study provided data that can be used to discriminate asbestiform and non-asbestiform amphiboles contained in landscaping rocks in parks. MethodIn five of the 21 parks, two or more landscaping rocks were found to contain asbestos. These five were selected for additional study. The length and width of fibers being at least 5 ㎛ long and with a minimum aspect ratio of 3:1 were measured using a Transmission Electron Microscope(TEM) and compared to a standard asbestos sample.ResultsThe park samples were thicker than 1 ㎛(average 1.9 ㎛) while the Health and Safety Executive(HSE) reference sample averaged 0.3 ㎛ in width with 100 % thinner than 1.0 ㎛. The average aspect ratios were 7.1 for the park samples and 67.1 for the HSE reference sample. The actinolite contained in the landscape rocks of the five selected parks did not show the typical asbestiform structure that was observed in the standard asbestos sample.ConclusionsBased on these distributions, the amphibole fibers in sampled landscape rocks were found to be thicker and lower aspect ratio than those of the standard sample. The result of this study can contribute to the public policy for managing and controlling of landscaping rocks containing naturally occurring asbestos(NOA) and also to communicate about the possible health risk resulting from NOA contained in landscaping rocks.

Author(s):  
Jiwoon Kwon

This review examined the main issues debated in Korea regarding the production and use of materials containing naturally occurring asbestos (NOA) as impurities, and investigated the impacts of these debates on the asbestos ban, as well as the future implications. In Korea, incidents associated with the production and use of NOA-contaminated talc powders, construction rocks, serpentinites, and dolomite rocks raised public concern and led to accelerating the ban on asbestos. The main controversies concern policies on appropriate asbestos content limits, whether materials containing a trace amount of NOA should be banned, and the control of materials with high human exposure risk. To address recurring controversies, the implementation of preventive measures to manage elongated mineral particles and the use of transmission electron microscopy for more sensitive analysis need to be discussed, along with reaching social agreement on the controversial policies. To minimize the potential exposure to asbestos that may occur during the production and use of industrial minerals in the future, it is necessary to apply occupational exposure control measures and monitor the health effects of the relevant population groups. These national policies on NOA should be prepared based on close collaboration and discussion with policymakers, industry stakeholders, and related academic experts.


2020 ◽  
Vol 26 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Erell Léocat

ABSTRACT Naturally occurring asbestos (NOA) has been a well-known issue within rock quarries for a long time. In France, the subject has recently become more controversial, particularly since 2013. In fact, some mineral fibers with the chemical composition of regulated asbestos (i.e., actinolite) have been discovered in road-base aggregates and associated air filter samples. The main problem concerns the determination of the asbestiform versus non-asbestiform character of such mineral particles. The in-force standard based on the morphological identification of a fiber does not allow one to make this distinction. Presently, in France, the asbestos analysis of building material is based on a “yes” or “no” result. This method has limitations for analyzing NOA, as NOA may be present in lower concentrations in natural materials, especially in road-base aggregates. The health effects of the non-asbestiform particles, also called “cleavage fragments,” with fiber morphology are not well established. The French government mandated the National Agency for Food, Environmental and Occupational Health and Safety to conduct a review on the “state of the art” concerning the cleavage fragment issue. The conclusions of the report highlight the fact that elongate mineral particles (EMPs) are up for debate and address remaining questions concerning this subject. The next fundamental step is to secure agreement on the terminology of EMPs with the aim of comparing the studies in different disciplines.


2020 ◽  
Author(s):  
Yul Roh ◽  
Byungno Park Park ◽  
Yongun Kim ◽  
Jaebong Park ◽  
Hyesu Kim ◽  
...  

<p>Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. It is proved that inhalation of asbestos fibers can lead to increase risk of developing several diseases such as lung cancer and malignant mesothelioma. The parent rocks of asbestos have been mainly associated with (ultra)mafic and carbonate rock. The previous studies on NOA were mainly limited to (ultra)mafic rock-hosted asbestos in S. Korea, but studies on carbonate rock-hosted asbestos are relatively rare in S. Korea. Therefore, this study was aimed to examine mineralogical characteristics of carbonate rock-hosted NOA. Types of rocks at the several sites mainly consisted of Precambrian metasedimentary rocks, carbonate rock, and Cretaceous and Jurassic granites. Asbestos-containing carbonate rock samples were obtained for mineralogical characterization. XRD, PLM, EPMA, SEM and EDS analyses were used to characterize mineralogical characteristics of the carbonate rock-hosted NOA. From the carbonate rock, fibrous minerals were occurred acicular and columnar forms in the several sites. Fibrous minerals were composed of mainly tremolite, actinolite, and associated minerals included possibly asbestos containing materials (ACM) such as talc, vermiculite, and sepiolite. The length and aspect ratios of tremolite and actinolite were similar to the standard asbestiform (length >5 ㎛, length:width = 3:1). These results indicate that both non-asbestiform and asbestiform tremolite and actinolite with acicular forms occurred in carbonate rocks at several sites. Geological and geochemical characteristics and mineral assemblages indicate tremolite and associated minerals might be formed by hydrothermal alternation and/or hydrothermal veins of carbonate rocks due to intrusion of acidic igneous rocks.</p>


2021 ◽  
Vol 2 (3) ◽  
pp. 501-515
Author(s):  
Rajib Kumar Biswas ◽  
Farabi Bin Ahmed ◽  
Md. Ehsanul Haque ◽  
Afra Anam Provasha ◽  
Zahid Hasan ◽  
...  

Steel fibers and their aspect ratios are important parameters that have significant influence on the mechanical properties of ultrahigh-performance fiber-reinforced concrete (UHPFRC). Steel fiber dosage also significantly contributes to the initial manufacturing cost of UHPFRC. This study presents a comprehensive literature review of the effects of steel fiber percentages and aspect ratios on the setting time, workability, and mechanical properties of UHPFRC. It was evident that (1) an increase in steel fiber dosage and aspect ratio negatively impacted workability, owing to the interlocking between fibers; (2) compressive strength was positively influenced by the steel fiber dosage and aspect ratio; and (3) a faster loading rate significantly improved the mechanical properties. There were also some shortcomings in the measurement method for setting time. Lastly, this research highlights current issues for future research. The findings of the study are useful for practicing engineers to understand the distinctive characteristics of UHPFRC.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 380
Author(s):  
Jun-Hyun Kim ◽  
Sanghyun You ◽  
Chang-Koo Kim

Si surfaces were texturized with periodically arrayed oblique nanopillars using slanted plasma etching, and their optical reflectance was measured. The weighted mean reflectance (Rw) of the nanopillar-arrayed Si substrate decreased monotonically with increasing angles of the nanopillars. This may have resulted from the increase in the aspect ratio of the trenches between the nanopillars at oblique angles due to the shadowing effect. When the aspect ratios of the trenches between the nanopillars at 0° (vertical) and 40° (oblique) were equal, the Rw of the Si substrates arrayed with nanopillars at 40° was lower than that at 0°. This study suggests that surface texturing of Si with oblique nanopillars reduces light reflection compared to using a conventional array of vertical nanopillars.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prasanta Kumar Mohanta ◽  
B. T. N. Sridhar ◽  
R. K. Mishra

Abstract Experiments and simulations were carried on C-D nozzles with four different exit geometry aspect ratios to investigate the impact of supersonic decay characteristics. Rectangular and elliptical exit geometries were considered for the study with various aspect ratios. Numerical simulations and Schlieren image study were studied and found the agreeable logical physics of decay and spread characteristics. The supersonic core decay was found to be of different length for different exit geometry aspect ratio, though the throat to exit area ratio was kept constant to maintain the same exit Mach number. The impact of nozzle exit aspect ratio geometry was responsible to enhance the mixing of primary flow with ambient air, without requiring a secondary method to increase the mixing characteristics. The higher aspect ratio resulted in better mixing when compared to lower aspect ratio exit geometry, which led to reduction in supersonic core length. The behavior of core length reduction gives the identical signature for both under-expanded and over-expanded cases. The results revealed that higher aspect ratio of the exit geometry produced smaller supersonic core length. The aspect ratio of cross section in divergent section of the nozzle was maintained constant from throat to exit to reduce flow losses.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 78
Author(s):  
Kalyani Bhide ◽  
Kiran Siddappaji ◽  
Shaaban Abdallah

This work attempts to connect internal flow to the exit flow and supersonic jet mixing in rectangular nozzles with low to high aspect ratios (AR). A series of low and high aspect ratio rectangular nozzles (design Mach number = 1.5) with sharp throats are numerically investigated using steady state Reynolds-averaged Navier−Stokes (RANS) computational fluid dynamics (CFD) with k-omega shear stress transport (SST) turbulence model. The numerical shadowgraph reveals stronger shocks at low ARs which become weaker with increasing AR due to less flow turning at the throat. Stronger shocks cause more aggressive gradients in the boundary layer resulting in higher wall shear stresses at the throat for low ARs. The boundary layer becomes thick at low ARs creating more aerodynamic blockage. The boundary layer exiting the nozzle transforms into a shear layer and grows thicker in the high AR nozzle with a smaller potential core length. The variation in the boundary layer growth on the minor and major axis is explained and its growth downstream the throat has a significant role in nozzle exit flow characteristics. The loss mechanism throughout the flow is shown as the entropy generated due to viscous dissipation and accounts for supersonic jet mixing. Axis switching phenomenon is also addressed by analyzing the streamwise vorticity fields at various locations downstream from the nozzle exit.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 23-28
Author(s):  
RAVI BHATIA ◽  
V. PRASAD ◽  
M. REGHU

High-quality multiwall carbon nanotubes (MWNTs) were produced by a simple one-step technique. The production of MWNTs was based on thermal decomposition of the mixture of a liquid phase organic compound and ferrocene. High degree of alignment was noticed by scanning electron microscopy. The aspect ratio of as-synthesized MWNTs was quite high (more than 4500). Transmission electron microscopy analysis showed the presence of the catalytic iron nanorods at various lengths of MWNTs. Raman spectroscopy was used to know the quality of MWNTs. The ratio of intensity of the G-peak to the D-peak was very high which revealed high quality of MWNTs. Magnetotransport studies were carried out at low temperature and a negative MR was noticed.


2017 ◽  
Vol 34 (12) ◽  
pp. 2569-2587 ◽  
Author(s):  
Sergey Y. Matrosov ◽  
Carl G. Schmitt ◽  
Maximilian Maahn ◽  
Gijs de Boer

AbstractA remote sensing approach to retrieve the degree of nonsphericity of ice hydrometeors using scanning polarimetric Ka-band radar measurements from a U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program cloud radar operated in an alternate transmission–simultaneous reception mode is introduced. Nonsphericity is characterized by aspect ratios representing the ratios of particle minor-to-major dimensions. The approach is based on the use of a circular depolarization ratio (CDR) proxy reconstructed from differential reflectivity ZDR and copolar correlation coefficient ρhυ linear polarization measurements. Essentially combining information contained in ZDR and ρhυ, CDR-based retrievals of aspect ratios are fairly insensitive to hydrometeor orientation if measurements are performed at elevation angles of around 40°–50°. The suggested approach is applied to data collected using the third ARM Mobile Facility (AMF3), deployed to Oliktok Point, Alaska. Aspect ratio retrievals were also performed using ZDR measurements that are more strongly (compared to CDR) influenced by hydrometeor orientation. The results of radar-based retrievals are compared with in situ measurements from the tethered balloon system (TBS)-based video ice particle sampler and the ground-based multiangle snowflake camera. The observed ice hydrometeors were predominantly irregular-shaped ice crystals and aggregates, with aspect ratios varying between approximately 0.3 and 0.8. The retrievals assume that particle bulk density influencing (besides the particle shape) observed polarimetric variables can be deduced from the estimates of particle characteristic size. Uncertainties of CDR-based aspect ratio retrievals are estimated at about 0.1–0.15. Given these uncertainties, radar-based retrievals generally agreed with in situ measurements. The advantages of using the CDR proxy compared to the linear depolarization ratio are discussed.


Sign in / Sign up

Export Citation Format

Share Document