scholarly journals CircKIF4A Enhances Osteosarcoma Proliferation And Metastasis By Sponging MiR-515-5p And Upregulating SLC7A11

Author(s):  
Pan He ◽  
Feng Liu ◽  
Zhijun Wang ◽  
Haoli Gong ◽  
Meilan Zhang ◽  
...  

Abstract Background Circular RNAs (circRNAs) are forms of non-coding RNAs that have crucial roles in regulation of various biological processes of several malignant tumors. circKIF4A is closely associated with malignant progression of a variety of cancers. However, the molecular mechanisms as well as roles of circKIF4A in osteosarcoma (OS) have not yet been clearly elucidated. Methods We evaluated the expression of circKIF4A in OS. Colony-formation, cell counting kit-8 (CCK-8), transwell and mice metastasis model assays were done to explore the roles of circKIF4A in vitro and in vivo. TargetScan database, double luciferase, quantitative reverse transcription polymerase chain reaction analysis (RT-qPCR), and RNA immunoprecipitation (RIP) were done to investigate the associated molecular mechanisms. Results In both OS cells and tissues, circKIF4A (hsa_circ_0007255) was found to be upregulated. In vitro and in vivo, circKIF4A knockdown markedly suppressed OS proliferation as well as metastasis. circKIF4A enhanced OS growth as well as metastasis by sponging miR-515-5p and by upregulating SLC7A11. Conclusions We identified the biological significance of the circKIF4A-miR-515-5p-SLC7A11 axis in OS cell proliferation and metastasis, which is important in OS monitoring and treatment. More studies on circKIF4A will inform on the diagnostic markers for early OS screening.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Junjie Cen ◽  
Yanping Liang ◽  
Yong Huang ◽  
Yihui Pan ◽  
Guannan Shu ◽  
...  

Abstract Background There is increasing evidence that circular RNAs (circRNAs) have significant regulatory roles in cancer development and progression; however, the expression patterns and biological functions of circRNAs in renal cell carcinoma (RCC) remain largely elusive. Method Bioinformatics methods were applied to screen for circRNAs differentially expressed in RCC. Analysis of online circRNAs microarray datasets and our own patient cohort indicated that circSDHC (hsa_circ_0015004) had a potential oncogenic role in RCC. Subsequently, circSDHC expression was measured in RCC tissues and cell lines by qPCR assay, and the prognostic value of circSDHC evaluated. Further, a series of functional in vitro and in vivo experiments were conducted to assess the effects of circSDHC on RCC proliferation and metastasis. RNA pull-down assay, luciferase reporter and fluorescent in situ hybridization assays were used to confirm the interactions between circSDHC, miR-127-3p and its target genes. Results Clinically, high circSDHC expression was correlated with advanced TNM stage and poor survival in patients with RCC. Further, circSDHC promoted tumor cell proliferation and invasion, both in vivo and in vitro. Analysis of the mechanism underlying the effects of circSDHC in RCC demonstrated that it binds competitively to miR-127-3p and prevents its suppression of a downstream gene, CDKN3, and the E2F1 pathway, thereby leading to RCC malignant progression. Furthermore, knockdown of circSDHC caused decreased CDKN3 expression and E2F1 pathway inhibition, which could be rescued by treatment with an miR-127-3p inhibitor. Conclusion Our data indicates, for the first time, an essential role for the circSDHC/miR-127-3p/CDKN3/E2F1 axis in RCC progression. Thus, circSDHC has potential to be a new therapeutic target in patients with RCC.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Chenjing Zhang ◽  
Xiaolu Zhou ◽  
Xiaoge Geng ◽  
Yu Zhang ◽  
Jingya Wang ◽  
...  

AbstractDysregulation of circular RNA (circRNA) expression is involved in the progression of cancer. Here, we aimed to study the potential function of hsa_circ_0006401 in colorectal cancer (CRC). CircRNA hsa_circ_0006401 expression levels in CRC and adjacent nontumor tissues were analyzed by real-time quantitative PCR (qRT-PCR) and circRNA in situ hybridization (RNA-ISH). Then, CRC cell proliferation was assessed by cell counting. Wound-healing and transwell assays were utilized to detect the effect of hsa_circ_0006401 on CRC migration. A circRNA-ORF construct was created, and a specific antibody against the splice junction of hsa_circ_0006401 was prepared. Finally, the proteins directly binding to hsa_circ_0006401 peptides were identified by immunoprecipitation combined with mass spectrometry. In our study, we found hsa_circ_0006401 was closely related to CRC metastasis and exhibited upregulated expression in metastatic CRC tissue samples. Proliferation and migration were inhibited in vitro when hsa_circ_0006401 expression was silenced. Downregulation of hsa_circ_0006401 expression decreased CRC proliferation and liver metastasis in vivo. A 198-aa peptide was encoded by sequences of the splice junction absent from col6a3. Hsa_circ_0006401 promoted CRC proliferation and migration by encoding the hsa_circ_0006401 peptide. Hsa_circ_0006401 peptides decreased the mRNA and protein level of the host gene col6a3 by promoting col6a3 mRNA stabilation. In conclusion, our study revealed that circRNAs generated from col6a3 that contain an open-reading frame (ORF) encode a novel 198-aa functional peptide and hsa_circ_0006401 peptides promote stability of the host gene col6a3 mRNA to promote CRC proliferation and metastasis.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Xiaoyong Huang ◽  
Haiyan Shi ◽  
Xinghai Shi ◽  
Xuemei Jiang

Abstract Background Cervical cancer (CC) is one of the most common and malignant tumors in women. In this study, we aim to explore the role and mechanism of F-box and leucine rich repeat protein 19 antisense RNA 1 (FBXL19-AS1), a novel long-chain non coding RNA (lncRNA) with marked roles in a variety of tumors, in regulating the proliferation and metastasis of CC. Methods The expression of FBXL19-AS1, miR-193a-5p and COL1A1 were detected by RT-PCR and western blot. Gain- and loss-of functional assays of FBXL19-AS1 and miR-193a-5p were performed in CC cell lines in vitro or in vivo. The proliferation, migration, invasion, apoptosis and epithelial-mesenchymal transition (EMT) of CC cells were determined. Results FBXL19-AS1 and COL1A1 were significantly up-regulated in CC tissues, while miR-193a-5p was significantly down-regulated. Overexpression of FBXL19-AS1 significantly promoted the proliferation, migration, invasion, EMT and growth of CC cells and inhibited apoptosis, while knockdown of FBXL19-AS1 had the opposite effects. On the other hand, miR-193a-5p inhibited the proliferation and metastasis of CC cells. Mechanistically, FBXL19-AS1 functioned as a competitive endogenous RNA (ceRNA) and inhibited the expression of miR-193a-5p, which targeted at the 3’-UTR site of COL1A1 and negatively regulated COL1A1 expression. Conclusions FBXL19-AS1 promotes the proliferation and metastasis of CC cells by sponging miR-193a-5p and up-regulating COL1A1.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Hongli Li ◽  
Qingjie Mu ◽  
Guoxin Zhang ◽  
Zhixin Shen ◽  
Yuanyuan Zhang ◽  
...  

AbstractIncreasing lines of evidence indicate the role of long non-coding RNAs (LncRNAs) in gene regulation and tumor development. Hence, it is important to elucidate the mechanisms of LncRNAs underlying the proliferation, metastasis, and invasion of lung adenocarcinoma (LUAD). We employed microarrays to screen LncRNAs in LUAD tissues with and without lymph node metastasis and revealed their effects on LUAD. Among them, Linc00426 was selected for further exploration in its expression, the biological significance, and the underlying molecular mechanisms. Linc00426 exhibits ectopic expression in LUAD tissues and cells. The ectopic expression has been clinically linked to tumor size, lymphatic metastasis, and tumor differentiation of patients with LUAD. The deregulation of Linc00426 contributes to a notable impairment in proliferation, invasion, metastasis, and epithelial–mesenchymal transition (EMT) in vitro and in vivo. Mechanistically, the deregulation of Linc00426 could reduce cytoskeleton rearrangement and matrix metalloproteinase expression. Meanwhile, decreasing the level of Linc00426 or increasing miR-455-5p could down-regulate the level of UBE2V1. Thus, Linc00426 may act as a competing endogenous RNA (ceRNA) to abate miR-455-5p-dependent UBE2V1 reduction. We conclude that Linc00426 accelerates LUAD progression by acting as a molecular sponge to regulate miR-455-5p, and may be a potential novel tumor marker for LUAD.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Sen Wang ◽  
Dong Tang ◽  
Wei Wang ◽  
Yining Yang ◽  
Xiaoqing Wu ◽  
...  

Abstract Background As a novel class of non-coding RNAs, circular RNAs (circRNAs) are key regulators of the development and progression of different cancers. However, little is known about the function and biological mechanism of circLMTK2, also named hsa_circ_0001725, in gastric cancer (GC) tumourigenesis. Methods circLMTK2 was identified in ten paired cancer specimens and adjacent normal tissues by RNA sequencing and genome-wide bioinformatic analysis and verified by quantitative real-time PCR (qRT-PCR). Knockdown or exogenous expression of circLMTK2 combined with in vitro and in vivo assays were performed to prove the functional significance of circLMTK2. The molecular mechanism of circLMTK2 was demonstrated by searching the CircNet database and confirmed by RNA in vivo precipitation assays, western blotting, luciferase assays and rescue experiments. Results circLMTK2 was frequently upregulated in GC tissues, and high circLMTK2 expression was associated with poor prognosis, lymph node metastasis and poor TNM stage in GC patients. Functionally, circLMTK2 overexpression promoted GC cell proliferation and tumourigenicity in vitro and in vivo. Furthermore, ectopic circLMTK2 expression enhanced GC cell migration and invasion in vitro and tumour metastasis in vivo. In addition, we demonstrated that circLMTK2 could sponge miR-150-5p, thus indirectly regulating the c-Myc expression and contributing to GC tumourigenesis. Conclusion Our findings demonstrate that circLMTK2 functions as a tumour promoter in GC through the miR-150-5p/c-Myc axis and could thus be a prognostic predictor and therapeutic target for GC.


2019 ◽  
Vol 20 (15) ◽  
pp. 3757 ◽  
Author(s):  
Beatrice Bachmeier ◽  
Dieter Melchart

The efficacy of the plant-derived polyphenol curcumin, in various aspects of health and wellbeing, is matter of public interest. An internet search of the term “Curcumin” displays about 12 million hits. Among the multitudinous information presented on partly doubtful websites, there are reports attracting the reader with promises ranging from eternal youth to cures for incurable diseases. Unfortunately, many of these reports are not based on scientific evidence, but they feed the desideratum of the reader for a “miracle cure”. This circumstance makes it very difficult for researchers, who work in a scientifically sound and evidence-based manner on the therapeutic benefits (or side effects) of curcumin, to demarcate their results from sensational reports that circulate in the web and in other media. This is only one of many obstacles making it difficult to pave curcumin’s way into clinical application; others are its nonpatentability and low economic usability. A further impediment comes from scientists who never worked with curcumin or any other natural plant-derived compound in their own labs. They have never tested these compounds in any scientific assay, neither in vitro nor in vivo; however, they claim, in a sometimes polemic manner, that everything that has so far been published on curcumin’s molecular effects is based on artefacts. The here presented Special Issue comprises a collection of five scientifically sound articles and nine reviews reporting on the therapeutic benefits and the molecular mechanisms of curcumin or of chemically modified curcumin in various diseases ranging from malignant tumors to chronic diseases, microbial infection, and even neurodegenerative diseases. The excellent results of the scientific projects that underlie the five original papers give reason to hope that curcumin will be part of novel treatment strategies in the near future—either as monotherapy or in combination with other drugs or therapeutic applications.


Author(s):  
Allison H. Bartlett ◽  
Pyong Woo Park

Many microbial pathogens subvert proteoglycans for their adhesion to host tissues, invasion of host cells, infection of neighbouring cells, dissemination into the systemic circulation, and evasion of host defence mechanisms. Where studied, specific virulence factors mediate these proteoglycan–pathogen interactions, which are thus thought to affect the onset, progression and outcome of infection. Proteoglycans are composites of glycosaminoglycan (GAG) chains attached covalently to specific core proteins. Proteoglycans are expressed ubiquitously on the cell surface, in intracellular compartments, and in the extracellular matrix. GAGs mediate the majority of ligand-binding activities of proteoglycans, and many microbial pathogens elaborate cell-surface and secreted factors that interact with GAGs. Some pathogens also modulate the expression and function of proteoglycans through known virulence factors. Several GAG-binding pathogens can no longer attach to and invade host cells whose GAG expression has been reduced by mutagenesis or enzymatic treatment. Furthermore, GAG antagonists have been shown to inhibit microbial attachment and host cell entry in vitro and reduce virulence in vivo. Together, these observations underscore the biological significance of proteoglycan–pathogen interactions in infectious diseases.


Author(s):  
Hengzhou Lin ◽  
Dahui Zuo ◽  
Jiabin He ◽  
Tao Ji ◽  
Jianzhong Wang ◽  
...  

The long noncoding RNA WEE2 antisense RNA 1 (WEE2-AS1) plays anoncogenic role in hepatocellular carcinoma and triple negative breast cancerprogression. In this study, we investigated the expression and roles of WEE2-AS1 inglioblastoma (GBM). Furthermore, the molecular mechanisms behind the oncogenicactions of WEE2-AS1 in GBM cells were explored in detail. WEE2-AS1 expressionwas detected using quantitative real-time polymerase chain reaction. The roles ofWEE2-AS1 in GBM cells were evaluated by the Cell Counting Kit-8 assay, flowcytometric analysis, and Transwell cell migration and invasion assays, and tumorxenograft experiments. WEE2-AS1 expression was evidently enhanced in GBM tissuesand cell lines compared with their normal counterparts. An increased level of WEE2-AS1 was correlated with the average tumor diameter, Karnofsky Performance Scalescore, and shorter overall survival among GBM patients. Functionally, depleted WEE2-AS1 attenuated GBM cell proliferation, migration, and invasion in vitro, promoted cellapoptosis, and impaired tumor growth in vivo. Mechanistically, WEE2-AS1 functionedas a molecular sponge for microRNA-520f-3p (miR-520f-3p) and consequentlyincreased specificity protein 1 (SP1) expression in GBM cells. A series of recoveryexperiments revealed that the inhibition of miR-520f-3p and upregulation of SP1 couldpartially abrogate the influences of WEE2-AS1 downregulation on GBM cells. Inconclusion, WEE2-AS1 can adsorb miR-520f-3p to increase endogenous SP1expression, thereby facilitating the malignancy of GBM. Therefore, targeting theWEE2-AS1-miR-520f-3p-SP1 pathway might be a promising therapy for themanagement of GBM in the future.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jinrong Zhu ◽  
Yongqi Wu ◽  
Shaoxi Lao ◽  
Jianfei Shen ◽  
Yijian Yu ◽  
...  

Accumulating evidence demonstrates that dysregulation of ubiquitin-mediated degradation of oncogene or suppressors plays an important role in several diseases. However, the function and molecular mechanisms of ubiquitin ligases underlying hepatocellular carcinoma (HCC) remain elusive. In the current study, we show that overexpression of TRIM54 was associated with HCC progression. TRIM54 overexpression facilitates proliferation and lung metastasis; however, inhibition of TRIM54 significantly suppressed HCC progression both in vitro and in vivo. Mechanically, we demonstrated that TRIM54 directly interacts with Axis inhibition proteins 1 (Axin1) and induces E3 ligase-dependent proteasomal turnover of Axin1 and substantially induces sustained activation of wnt/β-catenin in HCC cell lines. Furthermore, we showed that inhibition of the wnt/β-catenin signaling pathway via small molecule inhibitors significantly suppressed TRIM54-induced proliferation. Our data suggest that TRIM54 might function as an oncogenic gene and targeting the TRIM54/Axin1/β-catenin axis signaling may be a promising prognostic factor and a valuable therapeutic target for HCC.


2021 ◽  
Author(s):  
Mingming Jin ◽  
Junqian Zhang ◽  
Yue Wu ◽  
Yitian Dai ◽  
Gang Huang

Abstract Background: Accumulating reports showed how circular RNAs (circRNAs) act importantly during tumor progression via regulating gene expression, but regulatory mechanisms remain largely unknown. Current investigation clarified circRNA regulatory mechanisms in non-small cell lung cancer (NSCLC).Methods: High-throughput sequencing and quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection were utilized to explore circRNA expression in NSCLC tissues and cells. Our lab did statistical analyses and luciferase reporter analysis to validate correlations between circRNA, miRNA and gene expression. We transfected NSCLC cells with different vectors, and transwell migration, Cell Counting Kit-8 (CCK-8) proliferation along with colony formation assays were performed. In vivo tumorigenesis and metastasis assays were utilized to validate the circRNA role in NSCLC.Results: Data illustrated that hsa_circ_0041595 (circ-PSMB6) incremented in NSCLC cell lines and tissues, while circ-PSMB6 downregulation suppressed NSCLC cell proliferation and invasion in vitro and in vivo. Bioinformatics analysis and luciferase reporter data verified that miR-532-5p and Enhancer Of Zeste 1 Polycomb Repressive Complex 2 Subunit (EZH1) were circ-PSMB6 downstream targets in NSCLC cells. Overexpression of EZH1 or miR-532-5p inhibition reversed NSCLC cell invasion and proliferation after silencing circ-PSMB6. Further experiments discovered that circ-PSMB6 can influence cancer stem cell differentiation by regulating miR-532-5p/EZH1.Conclusions: Taken together, we found that circ-PSMB6 suppressed NSCLC metastasis and progression via sponging miR-532-5p and regulating EZH1 expression.


Sign in / Sign up

Export Citation Format

Share Document