scholarly journals Genome-wide profiling of active enhancers in colorectal cancer

Author(s):  
Min Wu ◽  
Qinglan Li ◽  
Xiang Lin ◽  
Ya-Li Yu ◽  
Lin Chen ◽  
...  

Abstract Colorectal cancer (CRC) is one of the most common cancers in the world. Although genomic mutations and SNPs have been extensively studied, the epigenomic status in CRC patient tissues remains elusive. Here, we profiled active enhancers genome-widely in paired CRC patient tissues through H3K27ac ChIP-Seq, together with genomic and transcriptomic analysis. Totally we sequenced 73 pairs of CRC tissues and generated 147 H3K27ac ChIP-Seq, 144 RNA-Seq, 147 whole genome sequencing and 86 H3K4me3 ChIP-Seq files. Our analysis discovered 5590 gain variant enhancer loci (VEL) and 1100 lost VELs in CRC, and 334 gain variant super enhancer loci (VSEL) and 121 lost VSELs. Multiple key transcription factors in CRC were predicted with motif analysis and core regulatory circuitry analysis. Further experiments verified the functions of 6 super enhancers governing PHF19, LIF, SLC7A5, CYP2S1, RNF43 and TBC1D16 in regulating cancer cell migration, and we identified KLF3 as a novel oncogenic transcription factor in CRC. Taken together, our work provides important epigenomic resource and novel functional factors for epigenetic studies in CRC.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qing-Lan Li ◽  
Xiang Lin ◽  
Ya-Li Yu ◽  
Lin Chen ◽  
Qi-Xin Hu ◽  
...  

AbstractColorectal cancer is one of the most common cancers in the world. Although genomic mutations and single nucleotide polymorphisms have been extensively studied, the epigenomic status in colorectal cancer patient tissues remains elusive. Here, together with genomic and transcriptomic analysis, we use ChIP-Seq to profile active enhancers at the genome wide level in colorectal cancer paired patient tissues (tumor and adjacent tissues from the same patients). In total, we sequence 73 pairs of colorectal cancer tissues and generate 147 H3K27ac ChIP-Seq, 144 RNA-Seq, 147 whole genome sequencing and 86 H3K4me3 ChIP-Seq samples. Our analysis identifies 5590 gain and 1100 lost variant enhancer loci in colorectal cancer, and 334 gain and 121 lost variant super enhancer loci. Multiple key transcription factors in colorectal cancer are predicted with motif analysis and core regulatory circuitry analysis. Further experiments verify the function of the super enhancers governing PHF19 and TBC1D16 in regulating colorectal cancer tumorigenesis, and KLF3 is identified as an oncogenic transcription factor in colorectal cancer. Taken together, our work provides an important epigenomic resource and functional factors for epigenetic studies in colorectal cancer.


2020 ◽  
Author(s):  
Linping Yan ◽  
Huanhuan Chen ◽  
Li Tang ◽  
Pan Jiang ◽  
Feng Yan

Abstract Background: Super-enhancer-associated long non-coding RNAs (SE-lncRNAs) have been reported to play essential roles in tumorigenesis, but the fundamental mechanism of SE-lncRNAs in colorectal cancer (CRC) remains largely unknown. Methods: A microarray was performed to identify the differentially expressed SE-lncRNAs between CRC tissues and peritumoral tissues. A novel SE-lncRNA AC005592.2 was selected from these differentially expressed SE-lncRNAs to explore its effects in the CRC development. Fluorescence quantitative real-time PCR (qRT-PCR) was used to assay the expression of AC005592.2 in CRC tissues and cell lines. Functional assays were applied to identify the biological effects of AC005592.2 in CRC cells. Furthermore, RNA-seq was employed to predict potential targets of AC005592.2. Results: AC005592.2 was significantly increased in CRC tissues and cells. And the high expression of AC005592.2 was significantly associated with TNM stage and tumor differentiation of CRC patients. Knockdown of AC005592.2 suppressed CRC cell proliferation, invasion and migration, but promoted apoptosis, while AC005592.2 overexpression exerted precisely the opposite effects on CRC cells. Besides, AC005592.2 positively regulated the expression of olfactomedin 4 (OLFM4), which was also up-regulation in CRC tissues. Conclusion: The findings suggested that AC005592.2 is a crucial promoter of CRC progression, and may serve as an attractive therapeutic target for CRC.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2329-2329
Author(s):  
Mira Jeong ◽  
Min Luo ◽  
Deqiang Sun ◽  
Gretchen Darlington ◽  
Rebecca Hannah ◽  
...  

Abstract Abstract 2329 Age is the most important risk factor for myelodysplastic syndrome (MDS), a premalignant state that transforms into acute myelogenous leukemia in one third of cases. Indeed with normal aging, hematopoietic stem cell (HSC) regenerative potential diminishes and differentiation skews from lymphopoiesis toward myelopoiesis. The expansion in the HSC pool with aging provides sufficient but abnormal blood production, and animals experience a decline in immune function. Previous studies from our lab established that the DNA methyltransferase 3a (Dnmt3a) enables efficient differentiation by critically regulating epigenetic silencing of HSC genes (Challen et al. 2012) Interestingly, Dnmt3a expression is decreased in old HSCs, leading us to hypothesize that epigenetic changes in old HSCs may partially mimic the changes seen in Dnmt3a mutant HSCs. We propose that revealing the genome-wide DNA methylation and transcriptome signatures will lead to a greater understanding of HSC aging and MDS, which is characterized by frequent epigenetic abnormalities. In this study, we investigated genome-wide DNA methylation and transcripts by whole genome bisulfite sequencing (WGBS) and transcriptome sequencing (mRNA-seq)in young and old HSCs. For WGBS, we generated ∼600M raw reads resulting in ∼ 60 raw Gb of paired-end sequence data and aligned them to either strand of the reference genome (mm9), providing an average 40-fold sequencing depth. Globally, there was a 1.1% difference in the DNA methylation between young and old HSCs. Of these differences, 38% (172,609) of the CpG dinucleotides were hypo-methylated, and 62% (275,557) were hyper-methylated in old HSCs. To understand where the methylation changes predominantly occurred, the genome was subdivided into 77 features. Among these features, SINEs, especially Alu elements, exhibited the highest level of DNA methylation (90.94% in young HSCs, and 91.87% in old HSCs). CpG islands (CGIs) adjacent to the transcription start sites (TSS) exhibited the lowest level of DNA methylation (2.02% in young HSCs, and 2.11% in old HSCs). Interestingly strong hypo-methylation was observed in ribosomal RNA regions (68.04% in young HSCs, 59.04% in old HSCs), and hyper-methylation was observed in LINEL1 repetitive elements (88.62% in young HSCs, 90.12% in old HSCs). Moreover, the examination of differentially methylated promoters identified enrichment of developmentally important transcription factors such as Gata2, Runx1, Gfi1b, Erg, Tal1 Eto2, Cebpa and Pu.1. Additionally, we compare our ∼10,000 differentially methylation regions (DMRs, regions with clustered DNA methylation changes) with a chip-seq data set containing binding of 160 ChIP-seq analyses of hematopoietic transcription factors in different hematopoietic cells. We found significant overlaps between DMRs and transcription factor binding regions. We found DMRs which were hypermethylated showed association with differentiation-promoting Ets factors, in particular Pu.1 from a range of different blood cell types. In contrast, hypomethylated DMRs showed associations with HSC-associated transcription factors such as Scl and Gata2. Further examination of the differentially methylated gene bodies, intragenic and intergenic DMRs identified some previously noted targets for epigenetic silencing or alteration in AML and also novel transcripts including long non-coding RNAs (lincRNA) and upstream regulatory elements (URE). We found significant correlation between RNA-seq expression and DMRs within +1kb upstream of TSS. RNA-sequencing provided complementary and distinct information about HSC aging. We identified differentially expressed genes, novel RNA transcripts, differential promoter, coding sequence, and splice variant usage with age. Gene set enrichment analysis of up- and down- regulated genes, revealed ribosomal protein and RNA metabolism as critical contributors to HSC aging. In conclusion, our study marks a milestone in the mouse HSC epigenome, reporting the first complete methylome and transcriptome of pure HSC using whole-genome bisulfite sequencing and RNA-seq. These provide novel information about the magnitude and specificity of age-related epigenetic changes in a well-defined HSC population. Understanding the roles of DNA methylation and transcription in normal HSC function will allow for greater therapeutic exploitation of HSCs in the clinic. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 112 (13) ◽  
pp. E1550-E1558 ◽  
Author(s):  
Matthew F. Jones ◽  
Toshifumi Hara ◽  
Princy Francis ◽  
Xiao Ling Li ◽  
Sven Bilke ◽  
...  

The transcription factor caudal-type homeobox 1 (CDX1) is a key regulator of differentiation in the normal colon and in colorectal cancer (CRC). CDX1 activates the expression of enterocyte genes, but it is not clear how the concomitant silencing of stem cell genes is achieved. MicroRNAs (miRNAs) are important mediators of gene repression and have been implicated in tumor suppression and carcinogenesis, but the roles of miRNAs in differentiation, particularly in CRC, remain poorly understood. Here, we identified microRNA-215 (miR-215) as a direct transcriptional target of CDX1 by using high-throughput small RNA sequencing to profile miRNA expression in two pairs of CRC cell lines: CDX1-low HCT116 and HCT116 with stable CDX1 overexpression, and CDX1-high LS174T and LS174T with stable CDX1 knockdown. Validation of candidate miRNAs identified by RNA-seq in a larger cell-line panel revealed miR-215 to be most significantly correlated with CDX1 expression. Quantitative ChIP–PCR and promoter luciferase assays confirmed that CDX1 directly activates miR-215 transcription. miR-215 expression is depleted in FACS-enriched cancer stem cells compared with unsorted samples. Overexpression of miR-215 in poorly differentiated cell lines causes a decrease in clonogenicity, whereas miR-215 knockdown increases clonogenicity and impairs differentiation in CDX1-high cell lines. We identified the genome-wide targets of miR-215 and found that miR-215 mediates the repression of cell cycle and stemness genes downstream of CDX1. In particular, the miR-215 target gene BMI1 has been shown to promote stemness and self-renewal and to vary inversely with CDX1. Our work situates miR-215 as a link between CDX1 expression and BMI1 repression that governs differentiation in CRC.


2020 ◽  
Vol 12 (4) ◽  
pp. 358-369
Author(s):  
Xueyuan Jiang ◽  
Raquel Assis

Abstract Much of the enormous phenotypic variation observed across human populations is thought to have arisen from events experienced as our ancestors peopled different regions of the world. However, little is known about the genes involved in these population-specific adaptations. Here, we explore this problem by simultaneously examining population-specific genetic and expression differentiation in four human populations. In particular, we derive a branch-based estimator of population-specific differentiation in four populations, and apply this statistic to single-nucleotide polymorphism and RNA-seq data from Italian, British, Finish, and Yoruban populations. As expected, genome-wide estimates of genetic and expression differentiation each independently recapitulate the known relationships among these four human populations, highlighting the utility of our statistic for identifying putative targets of population-specific adaptations. Moreover, genes with large copy number variations display elevated levels of population-specific genetic and expression differentiation, consistent with the hypothesis that gene duplication and deletion events are key reservoirs of adaptive variation. Further, many top-scoring genes are well-known targets of adaptation in Europeans, including those involved in lactase persistence and vitamin D absorption, and a handful of novel candidates represent promising avenues for future research. Together, these analyses reveal that our statistic can aid in uncovering genes involved in population-specific genetic and expression differentiation, and that such genes often play important roles in a diversity of adaptive and disease-related phenotypes in humans.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Linping Yan ◽  
Huanhuan Chen ◽  
Li Tang ◽  
Pan Jiang ◽  
Feng Yan

Abstract Background Super-enhancer-associated long noncoding RNAs (SE-lncRNAs) have been reported to play essential roles in tumorigenesis, but the fundamental mechanism of SE-lncRNAs in colorectal cancer (CRC) remains largely unknown. Methods A microarray was performed to identify the differentially expressed SE-lncRNAs between CRC tissues and peritumoral tissues. A novel SE-lncRNA, AC005592.2, was selected from these differentially expressed SE-lncRNAs to explore its effects on CRC development. Fluorescence quantitative real-time PCR (qRT-PCR) was used to assay the expression of AC005592.2 in CRC tissues and cell lines. Functional assays were applied to identify the biological effects of AC005592.2 in CRC cells. Furthermore, RNA-seq was employed to predict potential targets of AC005592.2. Results AC005592.2 was significantly increased in CRC tissues and cells. High expression of AC005592.2 was significantly associated with TNM stage and tumor differentiation in CRC patients. Knockdown of AC005592.2 suppressed CRC cell proliferation, invasion and migration but promoted apoptosis, while AC005592.2 overexpression exerted the opposite effects on CRC cells. In addition, AC005592.2 positively regulated the expression of olfactomedin 4 (OLFM4), which was also upregulated in CRC tissues. Conclusion The findings suggested that AC005592.2 is a crucial promoter of CRC progression and may serve as an attractive therapeutic target for CRC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chen-Yu Wang ◽  
Guang-Tao Yu ◽  
Chuan Gao ◽  
Ji Chen ◽  
Qing-Lan Li ◽  
...  

Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, but its epigenomic features have not been determined. Here, we studied the chromatin landscape of active enhancers of HNSCC head tumor tissues by performing H3K27ac and H3K4me1 ChIP-Seq with a Tgfbr1/Pten double conditional knockout HNSCC mouse model. We identified 1,248 gain variant enhancer loci (VELs) and 2,188 lost VELs, as well as 153 gain variant super enhancer loci (VSELs) and 234 lost VSELs. Potentially involved transcription factors were predicted with motif analysis, and we identified AP-1 as one of the critical oncogenic transcription factors in HNSCC and many other types of cancer. Combining transcriptomic and epigenomic data, our analysis also showed that AP-1 and histone modifications coordinately regulate target gene expression in HNSCC. In conclusion, our study provides important epigenomic information for enhancer studies in HNSCC and reveals new mechanism for AP-1 regulating HNSCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dingye Yu ◽  
Xiao Yang ◽  
Jianwei Lin ◽  
Zichao Cao ◽  
Chenghao Lu ◽  
...  

Unveiling key oncogenic events in malignancies is the key to improving the prognosis and therapeutic outcome of malignancies. Lines of evidence have shown that super-enhancers control the expression of genes that determine the cell fate, but the oncogenic super-enhancers in colorectal cancer (CRC) and their impact on carcinogens remain largely unexplored. Here, we identified a new oncogenic super-enhancer-regulated gene, IL-20RA, in CRC. Using the integrative analysis of H3K27ac ChIP-seq and RNA-seq in CRC tumors and normal colon tissues, we obtained a series of oncogenic super-enhancers in CRC. We found that super-enhancer inhibition by JQ-1 or iBET-151 suppressed the growth of tumor cells and inhibited the expression of IL-20RA. We found that IL-20RA was highly expressed in the tumor tissue of CRC and related to the advanced stage. Further functional studies showed that knockdown of IL-20RA inhibited the growth and metastasis of CRC. In addition, we found that IL-20RA was involved in regulating oncogenic and immune pathways and affecting the expression of genes related to cell proliferation and immune evasion in CRC. Together, our study demonstrated a novel oncogene in CRC and shed new light on oncogenic super-enhancer contributions to cell proliferation and immune escape.


2019 ◽  
Author(s):  
J.M. Yáñez ◽  
G. Yoshida ◽  
A. Barria ◽  
R. Palma-Véjares ◽  
D. Travisany ◽  
...  

ABSTRACTNile Tilapia (Oreochromis niloticus) is the second most important farmed fish in the world and a sustainable source of protein for human consumption. Several genetic improvement programs have been established for this species in the world and so far, they are mainly based on conventional selection using genealogical and phenotypic information to estimate the genetic merit of breeders and make selection decisions. Genome-wide information can be exploited to efficiently incorporate traits that are difficult to measure in the breeding goal. Thus, SNPs are required to investigate phenotype–genotype associations and determine the genomic basis of economically important traits. We performed de novo SNP discovery in three different populations of farmed tilapias. A total of 29.9 million non-redundant SNPs were identified through Illumina (HiSeq 2500) whole-genome resequencing of 326 individual samples. After applying several filtering steps including removing SNP based on genotype and site quality, presence of Mendelian errors, and non unique position in the genome, a total of high quality 50,000 SNP were selected for validation purposes. These SNPs were highly informative in the three populations analyzed showing between 43,869 (94%) and 46,139 (99%) SNP in HWE; 37,843 (76%) and 45,171(90%) SNP with a MAF higher than 0.05 and; 43,450 (87%) and 46,570 (93%) SNPs with a MAF higher than 0.01. The final list of 50K SNPs will be very useful for the dissection of economically relevant traits, enhancing breeding programs through genomic selection as well as supporting genetic studies in farmed populations Nile tilapia using dense genome-wide information.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Agata Stodolna ◽  
Miao He ◽  
Mahesh Vasipalli ◽  
Zoya Kingsbury ◽  
Jennifer Becq ◽  
...  

Abstract Background Clinical-grade whole-genome sequencing (cWGS) has the potential to become the standard of care within the clinic because of its breadth of coverage and lack of bias towards certain regions of the genome. Colorectal cancer presents a difficult treatment paradigm, with over 40% of patients presenting at diagnosis with metastatic disease. We hypothesised that cWGS coupled with 3′ transcriptome analysis would give new insights into colorectal cancer. Methods Patients underwent PCR-free whole-genome sequencing and alignment and variant calling using a standardised pipeline to output SNVs, indels, SVs and CNAs. Additional insights into the mutational signatures and tumour biology were gained by the use of 3′ RNA-seq. Results Fifty-four patients were studied in total. Driver analysis identified the Wnt pathway gene APC as the only consistently mutated driver in colorectal cancer. Alterations in the PI3K/mTOR pathways were seen as previously observed in CRC. Multiple private CNAs, SVs and gene fusions were unique to individual tumours. Approximately 30% of patients had a tumour mutational burden of > 10 mutations/Mb of DNA, suggesting suitability for immunotherapy. Conclusions Clinical whole-genome sequencing offers a potential avenue for the identification of private genomic variation that may confer sensitivity to targeted agents and offer patients new options for targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document