scholarly journals Gut Microbiota and Metabolome Alterations Associated with Chinese Monks’ Practice

Author(s):  
Tingting Qiao ◽  
Ganghua Lu ◽  
Zhongwei Lv ◽  
Dan Li ◽  
Chengyou Jia ◽  
...  

Abstract BackgroundThe practices of monks mainly include long-term vegetarianism and meditation, which are likely to fundamentally influence the gut microbiota and fecal metabolites. We aim to study the relationship between the practices of Chinese monks and gut microbiotas and metabolites.MethodsTwenty-four monks and forty-eight omnivorous controls (never meditated) were included. The microbiotas of all samples were profiled by 16S rRNA gene sequencing, and the metabolomes were examined by nontargeted LC–MS metabolomics. Twenty-four monks were divided into the H group and the L group according to the median time of practice, and microbiota and metabolite analyses were carried out in the two groups.ResultsMicrobial communities and metabolites were decreased in monks. Bacteroidetes was increased in monks, while the Firmicutes, Actinobacteria, and Firmicutes/Bacteroidetes ratios were decreased. At the genus level, Faecalibacterium, Lachnospira, Roseburia, norank_f__Lachnospiraceae, etc. were higher in monks, while Blautia, Eubacterium__hallii_group, Bifidobacteria, etc. were lower (all p < 0.05). Most identical KEGG categories in both Tax4Fun and PICRUSt2 were related to metabolism (6/8, 75.0%). Most higher abundance genera were positively correlated with higher abundance metabolites in monks, indicating that intestinal flora significantly affects intestinal metabolic function. Lipids and lipid-like molecules were the major differential metabolites (VIP >2, p < 0.05) in the two groups. L-dopa plays an important role in many metabolic pathways in monks. Prevotella_9 was enriched in the L group, while norank_f__Lachnospiraceae was enriched in the H group. DG (16:0/18:0/0:0) was highly expressed in the H group and participated in sixteen KEGG functional pathways as well as many immune-related KEGG enrichment pathways.ConclusionThe monks' lifestyle practices of vegetarianism and meditation have the potential to modulate human metabolism and function by affecting the gut microbial composition and metabolites. The appropriate practice of monks makes the intestine younger and increases immunity, but long-term practice may cause adverse physical and mental events.

Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


Author(s):  
Shiju Xiao ◽  
Guangzhong Zhang ◽  
Chunyan Jiang ◽  
Xin Liu ◽  
Xiaoxu Wang ◽  
...  

BackgroundIncreasing evidence has shown that alterations in the intestinal microbiota play an important role in the pathogenesis of psoriasis. The existing relevant studies focus on 16S rRNA gene sequencing, but in-depth research on gene functions and comprehensive identification of microbiota is lacking.ObjectivesTo comprehensively identify characteristic gut microbial compositions, genetic functions and relative metabolites of patients with psoriasis and to reveal the potential pathogenesis of psoriasis.MethodsDNA was extracted from the faecal microbiota of 30 psoriatic patients and 15 healthy subjects, and metagenomics sequencing and bioinformatic analyses were performed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database, cluster of orthologous groups (COG) annotations, and metabolic analyses were used to indicate relative target genes and pathways to reveal the pathogenesis of psoriasis.ResultsCompared with healthy individuals, the gut microbiota of psoriasis patients displayed an alteration in microbial taxa distribution, but no significant difference in microbial diversity. A distinct gut microbial composition in patients with psoriasis was observed, with an increased abundance of the phyla Firmicutes, Actinobacteria and Verrucomicrobia and genera Faecalibacterium, Bacteroides, Bifidobacterium, Megamonas and Roseburia and a decreased abundance of the phyla Bacteroidetes, Euryarchaeota and Proteobacteria and genera Prevotella, Alistipes, and Eubacterium. A total of 134 COGs were predicted with functional analysis, and 15 KEGG pathways, including lipopolysaccharide (LPS) biosynthesis, WNT signaling, apoptosis, bacterial secretion system, and phosphotransferase system, were significantly enriched in psoriasis patients. Five metabolites, hydrogen sulfide (H2S), isovalerate, isobutyrate, hyaluronan and hemicellulose, were significantly dysregulated in the psoriatic cohort. The dysbiosis of gut microbiota, enriched pathways and dysregulated metabolites are relevant to immune and inflammatory response, apoptosis, the vascular endothelial growth factor (VEGF) signaling pathway, gut-brain axis and brain-skin axis that play important roles in the pathogenesis of psoriasis.ConclusionsA clear dysbiosis was displayed in the gut microbiota profile, genetic functions and relative metabolites of psoriasis patients. This study is beneficial for further understanding the inflammatory pathogenesis of psoriasis and could be used to develop microbiome-based predictions and therapeutic approaches.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xue Gong ◽  
Cheng Huang ◽  
Xun Yang ◽  
Jianjun Chen ◽  
Juncai Pu ◽  
...  

The microbiota–gut–brain axis has been considered to play an important role in the development of depression, but the underlying mechanism remains unclear. The gastrointestinal tract is home to trillions of microbiota and the colon is considered an important site for the interaction between microbiota and host, but few studies have been conducted to evaluate the alterations in the colon. Accordingly, in this study, we established a chronic social defeated stress (CSDS) mice model of depression. We applied 16S rRNA gene sequencing to assess the gut microbial composition and gas and liquid chromatography–mass spectroscopy to identify fecal metabolites and colonic lipids, respectively. Meanwhile, we used Spearman’s correlation analysis method to evaluate the associations between the gut microbiota, fecal metabolites, colonic lipids, and behavioral index. In total, there were 20 bacterial taxa and 18 bacterial taxa significantly increased and decreased, respectively, in the CSDS mice. Further, microbial functional prediction demonstrated a disturbance of lipid, carbohydrate, and amino acid metabolism in the CSDS mice. We also found 20 differential fecal metabolites and 36 differential colonic lipids (in the category of glycerolipids, glycerophospholipids, and sphingolipids) in the CSDS mice. Moreover, correlation analysis showed that fecal metabolomic signature was associated with the alterations in the gut microbiota composition and colonic lipidomic profile. Of note, three lipids [PC(16:0/20:4), PG(22:6/22:6), and PI(18:0/20:3), all in the category of glycerophospholipids] were significantly associated with anxiety- and depression-like phenotypes in mice. Taken together, our results indicated that the gut microbiota might be involved in the pathogenesis of depression via influencing fecal metabolites and colonic glycerophospholipid metabolism.


2021 ◽  
Vol 83 (1) ◽  
pp. 29-43
Author(s):  
Tammi Duncan ◽  
Margaret Werner-Washburne ◽  
Diana Northup

Siderophores are microbially-produced ferric iron chelators. They are essential for microbial survival, but their presence and function for cave microorganisms have not been extensively studied. Siderophores are classified based on the common functional groups (catechols, hydroxamates, carboxylates, and mixed) that coordinate to ferric (Fe3+) iron. Cave environments are nutrient-limited and previous evidence suggests siderophore usage in carbonate caves. We hypothesize that siderophores are likely used as a mechanism in caves to obtain critical ferric iron. Cave bacteria were collected from long-term parent cultures (LT PC) or short-term parent cultures (ST PC) inoculated with ferromanganese deposits (FMD) and carbonate secondary minerals from Lechuguilla and Spider caves in Carlsbad Caverns National Park, NM. LT PC were incubated for 10−11 years to identify potential chemolithoheterotrophic cultures able to survive in nutrient-limited conditions. ST PC were incubated for 1−3 days to identify a broader diversity of cave isolates. A total of 170 LT and ST cultures, 18 pure and 152 mixed, were collected and used to classify siderophore production and type and to identify siderophore producers. Siderophore production was slow to develop (>10 days) in LT cultures with a greater number of weak siderophore producers in comparison to the ST cultures that produced siderophores in <10 days, with a majority of strong siderophore producers. Overall, 64% of the total cultures were siderophore producers, with the majority producing hydroxamate siderophores. Siderophore producers were classified into Proteobacteria (Alpha-, Beta-, or Gamma-), Actinobacteria, Bacteroidetes, and Firmicutes phyla using 16S rRNA gene sequencing. Our study supports our hypothesis that cave bacteria have the capability to produce siderophores in the subsurface to obtain critical ferric iron.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiao Liang ◽  
Chang-Shun Liu ◽  
Xiao-Han Wei ◽  
Ting Xia ◽  
Fei-Long Chen ◽  
...  

Mahuang Fuzi Xixin Decoction (MFXD), a Chinese traditional herbal formulation, has been used to treat allergic rhinitis (AR) in China for centuries. However, the mechanism underlying its effect on AR is unclear. This study investigated the mechanism underlying the therapeutic effects of MFXD on AR. Ovalbumin-induced AR rat models were established, which were then treated with MFXD for 14 days. Symptom scores of AR were calculated. The structure of the gut microbiota was analyzed by 16S rRNA gene sequencing and qPCR. Short-chain fatty acid (SCFA) content in rat stool and serum was determined by GC-MS. Inflammatory and immunological responses were assessed by histopathology, ELISA, flow cytometry, and western blotting. Our study demonstrated that MFXD reduced the symptom scores of AR and serum IgE and histamine levels. MFXD treatment restored the diversity of the gut microbiota: it increased the abundance of Firmicutes and Bacteroidetes and decreased the abundance of Proteobacteria and Cyanobacteria. MFXD treatment also increased SCFA content, including that of acetate, propionate, and butyrate. Additionally, MFXD administration downregulated the number of Th17 cells and the levels of the Th17-related cytokines IL-17 and RORγt. By contrast, there was an increase in the number of Treg cells and the levels of the Treg-related cytokines IL-10 and Foxp3. MFXD and butyrate increased the levels of ZO-1 in the colon. This study indicated MFXD exerts therapeutic effects against AR, possibly by regulating the gut microbial composition and Th17/Treg balance.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 744 ◽  
Author(s):  
Jose Jaimes ◽  
Veronika Jarosova ◽  
Ondrej Vesely ◽  
Chahrazed Mekadim ◽  
Jakub Mrazek ◽  
...  

Dietary phenolics or polyphenols are mostly metabolized by the human gut microbiota. These metabolites appear to confer the beneficial health effects attributed to phenolics. Microbial composition affects the type of metabolites produced. Reciprocally, phenolics modulate microbial composition. Understanding this relationship could be used to positively impact health by phenolic supplementation and thus create favorable colonic conditions. This study explored the effect of six stilbenoids (batatasin III, oxyresveratrol, piceatannol, pinostilbene, resveratrol, thunalbene) on the gut microbiota composition. Stilbenoids were anaerobically fermented with fecal bacteria from four donors, samples were collected at 0 and 24 h, and effects on the microbiota were assessed by 16S rRNA gene sequencing. Statistical tests identified affected microbes at three taxonomic levels. Observed microbial composition modulation by stilbenoids included a decrease in the Firmicutes to Bacteroidetes ratio, a decrease in the relative abundance of strains from the genus Clostridium, and effects on the family Lachnospiraceae. A frequently observed effect was a further decrease of the relative abundance when compared to the control. An opposite effect to the control was observed for Faecalibacterium prausnitzii, whose relative abundance increased. Observed effects were more frequently attributed to resveratrol and piceatannol, followed by thunalbene and batatasin III.


2021 ◽  
Author(s):  
Li Wang ◽  
Man-Yun Chen ◽  
Li Shao ◽  
Wei Zhang ◽  
Xiang-Ping Li ◽  
...  

Abstract Background: Panax notoginseng saponins (PNS) as the main effective substances from P. notoginseng with low bioavailability could be bio-converted by human gut microbiota. In our previous study, PNS metabolic variations mediated by gut microbiota have been observed between high fat, high protein (HF-HP)-diet and low fat, plant fiber-rich (LF-PF)-diet subjects. In this study, we aimed to correspondingly characterize the relationship between distinct gut microbiota profiles and PNS metabolites. Methods: Gut microbiota were collected from HF-HP and LF-PF healthy adults, respectively and profiled by 16S rRNA gene sequencing. PNS were incubated with gut microbiota in vitro. A LC-MS/MS method was developed to quantify the five main metabolites yields including ginsenoside F1 (GF1), ginsenoside Rh2 (GRh2), ginsenoside compound K (GC-K), protopanaxatriol (PPT) and protopanaxadiol (PPD). The selected microbial species, Bifidobacterium adolescentis and Lactobacillus rhamnosus, were employed to metabolize PNS for the corresponding metabolites.Results: The five main metabolites were significantly different between the two diet groups. Compared with HF-HP group, the microbial genus Blautia, Bifidobacterium, Clostridium, Corynebacterium, Dorea, Enhydrobacter, Lactobacillus, Roseburia, Ruminococcus, SMB53, Streptococcus, Treponema and Weissella were enriched in LF-PF group, while Phascolarctobacterium and Oscillospira were relatively decreased. Furthermore, Spearman’s correlative analysis revealed gut microbiota enriched in LF-PF and HF-HP groups were positively and negatively associated with PNS metabolites yields, respectively. Conclusions: Our data showed gut microbiota diversity led to the personalized bioconversion of PNS.


Author(s):  
Yumiko Okamoto ◽  
Natsumi Ichinohe ◽  
Cheolwoon Woo ◽  
Sung-Yong Han ◽  
Hyeong-Hoo Kim ◽  
...  

AbstractUnderstanding the gut microbiota characteristics of endangered species such as the Eurasian otter (Lutra lutra), especially in their early stages of life, could be essential for improving their management and ex situ conservation strategies. Here, we analyzed the gut microbiota diversity, composition, and function of captive Eurasian otters at different ages using high-throughput 16S rRNA gene sequencing. We found that: (1) Clostridiaceae was abundant in all age stages; (2) Lactococcus in cubs is thought to predominate for digesting milk; (3) bacteria associated with amino acid metabolism increase with age, while bacteria associated with carbohydrate metabolism decrease with age, which is likely due to decrease in dietary carbohydrate content (e.g., milk) and increase in dietary protein contents (e.g., fishes) with age; and (4) fish-related bacteria were detected in feces of healthy adults and juveniles. Overall, the gut microbiota of captive Eurasian otters was taxonomically and functionally different by age, which is thought to be attributed to the difference in the diet in their life stages. This study provided baseline information regarding the gut microbiota of Eurasian otters for the first time and contributes to improvement in their management in captivity.


2021 ◽  
Vol 9 (5) ◽  
pp. 1030
Author(s):  
Ke Liu ◽  
Siyu Chen ◽  
Jing Huang ◽  
Feihong Ren ◽  
Tingyu Yang ◽  
...  

The oral microbiota can be affected by several factors; however, little is known about the relationship between diet, ethnicity and commensal oral microbiota among school children living in close geographic proximity. In addition, the relationship between the oral and gut microbiota remains unclear. We collected saliva from 60 school children from the Tibetan, Han and Hui ethnicities for a 16S rRNA gene sequencing analysis and comparison with previously collected fecal samples. The study revealed that Bacteroidetes and Proteobacteria were the dominant phyla in the oral microbiota. The Shannon diversity was lowest in the Tibetan group. A PCA showed a substantial overlap in the distribution of the taxa, indicating a high degree of conservation among the oral microbiota across ethnic groups while the enrichment of a few specific taxa was observed across different ethnic groups. The consumption of seafood, poultry, sweets and vegetables was significantly correlated with multiple oral microbiotas. Furthermore, 123 oral genera were significantly associated with 191 gut genera. A principal coordinate analysis revealed that the oral microbiota clustered separately from the gut microbiota. This work extends the findings of previous studies comparing microbiota from human populations and provides a basis for the exploration of the interactions governing the tri-partite relationship between diet, oral microbiota and gut microbiota.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Polly Soo Xi Yap ◽  
Chun Wie Chong ◽  
Azanna Ahmad Kamar ◽  
Ivan Kok Seng Yap ◽  
Yao Mun Choo ◽  
...  

AbstractEmerging evidence has shown a link between the perturbations and development of the gut microbiota in infants with their immediate and long-term health. To better understand the assembly of the gut microbiota in preterm infants, faecal samples were longitudinally collected from the preterm (n = 19) and term (n = 20) infants from birth until month 12. 16S rRNA gene sequencing (n = 141) and metabolomics profiling (n = 141) using nuclear magnetic resonance spectroscopy identified significant differences between groups in various time points. A panel of amino acid metabolites and central metabolism intermediates significantly correlated with the relative abundances of 8 species of bacteria were identified in the preterm group. In contrast, faecal metabolites of term infants had significantly higher levels of metabolites which are commonly found in milk such as fucose and β-hydroxybutyrate. We demonstrated that the early-life factors such as gestational age, birth weight and NICU exposures, exerted a sustained effect to the dynamics of gut microbial composition and metabolism of the neonates up to one year of age. Thus, our findings suggest that intervention at this early time could provide ‘metabolic rescue’ to preterm infants from aberrant initial gut microbial colonisation and succession.


Sign in / Sign up

Export Citation Format

Share Document