scholarly journals Efficiency of Extremophilic Microbial Mats for Removing of Pb(II), Cu(II) and Ni(II) ions from Aqueous Solutions

Author(s):  
Khairia M. Al-Qahtani ◽  
Mohamed H.H. Ali ◽  
Mohamed S. Abdelkarim ◽  
Afify D. G. Al-Afify

Abstract Two different extremophilic films were used as natural biosorbents to remove Cu(II), Ni(II) and Pb(II) from aqueous solution. Surface area, scanning electron microscope imaging and Fourier transformation infrared were used to characterize the surface of biosorbents. The results indicated high affinity of biosorbents to remove Pb(II) Cu(II) and Ni(II) with adsorption ratio ranged between 73.6–100% for both two biosorbent. The two biosorbents success to remove the metal ions from the aqueous mixture in the order of Pb(II) > Cu(II) > Ni(II). The maximum removal ratios of metal ions were achieved at pH = 6, 150 min contact time, 2.5 g/L biosorbent dose and 50 mg/L metal ions. The isothermal studies showed that both Langmuir and Freundlich models well expressed the adsorption process. Kinetically, the pseudo-second order reaction well express the type of reaction than pseud-first order reaction.

2014 ◽  
Vol 7 ◽  
pp. ASWR.S16488 ◽  
Author(s):  
Ruchi Pandey ◽  
Nasreen Ghazi Ansari ◽  
Ram Lakhan Prasad ◽  
Ramesh Chandra Murthy

This paper describes the adsorption of Cd(II) ions from aqueous solutions by modified Cucumis sativus peel (CSP) by HCl treatment. The optimum pH, adsorbent mass, contact time, and initial ion concentration were determined. The maximum removal efficiency was 84.85% for 20 mg/L Cd(II) ion at pH 5. The adsorption isotherms were obtained using concentrations of the metal ions ranging from 5 to 150 mg/L. The adsorption process follows Langmuir isotherm and pseudo-second-order reaction kinetics. CSPs exhibit monolayer adsorption capacity of 58.14 mg/g at 298 K. The paper also discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results establish that the adsorption process was spontaneous and endothermic under normal conditions.


2015 ◽  
Vol 61 (6) ◽  
pp. 399-408 ◽  
Author(s):  
Huining Zhang ◽  
Li Liu ◽  
Qing Chang ◽  
Hongyu Wang ◽  
Kai Yang

The adsorption behavior of Cr(VI) ions from aqueous solution by a chromium-tolerant strain was studied through batch experiments. An isolate designated Zer-1 was identified as a species of Bosea on the basis of 16S rRNA results. It showed a maximum resistance to 550 mg·L−1 Cr(VI). The effects of 3 important operating parameters, initial solution pH, initial Cr(VI) concentration, and biomass dose, were investigated by central composite design. On the basis of response surface methodology results, maximal removal efficiency of Cr(VI) was achieved under the following conditions: pH, 2.0; initial concentration of metal ions, 55 mg·L−1; and biomass dose, 2.0 g·L−1. Under the optimal conditions, the maximum removal efficiency of Cr(VI) ions was found to be nearly 98%. The experimental data exhibited a better fit with the Langmuir model than the Freundlich model. The biosorption mechanisms were investigated with pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. These results revealed that biosorption of Cr(VI) onto bacterial biomass could be an alternative method for the removal of metal ions from aqueous solution.


Author(s):  
Jock Asanja Alexander ◽  
Oboh Oseribo Innocent ◽  
Uwem Ekwere Inyang ◽  
Ganchok Lawrence ◽  
Adeku Ojo

Abstract In this work bentonite clay was characterized and investigated for the adsorption of chromium and nickel metal ions from aqueous solution. The clay calcined at 650 °C was characterized for physical, chemical and textural properties. Nickel sulphate hexahydrate (NiSO4.6H2O) and chromium tri oxide (Cr2O3) solutions were used as metal model compounds to evaluate the adsorption efficiency of the clay in a batch mode. The initial metal ions concentration range from 10 to 50 mg/L and the maximum removal efficiency was 99.40% for Cr (III) and 71.50% for Ni (II) metal ions. Langmuir and Freundlich models were utilized for the analysis of adsorption equilibrium isotherm. The experimental data fitted well into Freundlich model for Cr (III) with regression coefficient (R2) of 0.996 and the Langmuir model for Ni (II) having R2 value 0.994. The Pseudo second order kinetic model fitted well for both chromium and nickel and their adsorption from single metal solutions followed the order Cr > Ni. Highlight The local clay has not been reported in any scholarly journal or publication. Theremoval of nickel and chromium using this clay has been found effective. The dataobtained will form a baseline for references and learning purposes.


2021 ◽  
Vol 37 (1) ◽  
pp. 71-79
Author(s):  
Kshipra Nimodia ◽  
Aruna Solanki ◽  
Laxmi Kunwar Chauhan ◽  
Ajay Kumar Goswami ◽  
Prabhat Kumar Baroliya

In this research, the practical feasibility of sawdust waste products from wood-processing industries was evaluated for the elimination of Pb+2 and Co+2 metal ions from mono and binary aquatic solutions. The batch method was used to achieve optimum conditions of including the amount of sorbent, pH, process time, and concentration of metal ions. The absorptive cycle reported maximum removal of lead and cobalt within pH range 6.0 at an initial concentration of 10 mg L–1. Kinetics data collected during the adsorption of both metals is better represented in a pseudo-second-order layout. The equilibrium of adsorption is based on the concept of Langmuir adsorption layout. Thermodynamic parameters demonstrated the feasibility, spontaneity, and endothermic character of heavy metal sorption. The sorption of metal ions was verified by instrumental experiments for example scanning electron microscope (SEM), energy dispersive x-ray spectrometry (EDX), and Fourier transform infrared spectroscopy (FTIR). Thus, sawdust can be an effective material for removing Pb+2 and Co+2 ions from aquatic solutions.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (3) ◽  
pp. 167-174 ◽  
Author(s):  
QIANQIAN WANG ◽  
J.Y. ZHU

Mixed office paper (MOP) pulp without deinking with an ash content of 18.1 ± 1.5% was used as raw material to produce nanofiller-paper. The MOP pulp with filler was mechanically fibrillated using a laboratory stone grinder. Scanning electron microscope imaging revealed that the ground filler particles were wrapped by cellulose nanofibrils (CNFs), which substantially improved the incorporation of filler into the CNF matrix. Sheets made of this CNF matrix were densified due to improved bonding. Specific tensile strength and modulus of the nanofiller-paper with 60-min grinding reached 48.4 kN·m/kg and 8.1 MN·m/kg, respectively, approximately 250% and 200% of the respective values of the paper made of unground MOP pulp. Mechanical grinding duration did not affect the thermal stability of the nanofiller-paper.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Theresa C. Umeh ◽  
John K. Nduka ◽  
Kovo G. Akpomie

AbstractDeterioration in soil–water environment severely contributed by heavy metal bioavailability and mobility on soil surface and sub-surface due to irrational increase in wastewater discharge and agrochemical activities. Therefore, the feasibility of adsorption characteristics of the soil is paramount in curbing the problem of micropollutant contamination in the farming vicinity. Soil from a farming site in a populated area in Enugu, Nigeria was collected and tested to measure the lead and cadmium contents using atomic absorption spectrophotometer (AAS). The adsorption potency of the ultisol soil was estimated for identifiable physicochemical properties by standard technique. The mean activity concentration of Pb2+ and Cd2+ was 15.68 mg/kg and 3.01 mg/kg. The pH, temperature, metal concentration and contact time adsorptive effect on the Pb2+ and Cd2+ uptake was evaluated by batch adsorption technique. The Langmuir, Freundlich and Temkin models were fitted into equilibrium adsorption data and the calculated results depict a better and satisfactory correlation for Langmuir with higher linear regression coefficients (Pb2+, 0.935 and Cd2+, 0.971). On the basis of sorption capacity mechanism of the soil, pseudo-second-order model best described the kinetics of both metal ions retention process. The results of the present study indicated that the soil being a low cost-effective adsorbent can be utilized to minimize the environmental risk impact of these metal ions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1907
Author(s):  
Fatma Hussain Emamy ◽  
Ali Bumajdad ◽  
Jerzy P. Lukaszewicz

Optimizing the physicochemical properties of the chitosan-based activated carbon (Ch-ACs) can greatly enhance its performance toward heavy metal removal from contaminated water. Herein, Ch was converted into a high surface area (1556 m2/g) and porous (0.69 cm3/g) ACs with large content of nitrogen (~16 wt%) using K2CO3 activator and urea as nitrogen-enrichment agents. The prepared Ch-ACs were tested for the removal of Cr(VI) and Pb(II) at different pH, initial metal ions concentration, time, activated carbon dosage, and temperature. For Cr(VI), the best removal was at pH = 2, while for Pb(II) the best pH for its removal was in the range of 4–6. At 25 °C, the Temkin model gives the best fit for the adsorption of Cr(VI), while the Langmuir model was found to be better for Pb(II) ions. The kinetics of adsorption of both heavy metal ions were found to be well-fitted by a pseudo-second-order model. The findings show that the efficiency and the green properties (availability, recyclability, and cost effectiveness) of the developed adsorbent made it a good candidate for wastewaters treatment. As preliminary work, the prepared sorbent was also tested regarding the removal of heavy metals and other contaminations from real wastewater and the obtained results were found to be promising.


2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


2009 ◽  
Vol 15 (S2) ◽  
pp. 642-643
Author(s):  
M Bolorizadeh ◽  
HF Hess

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2013 ◽  
Vol 789 ◽  
pp. 176-179 ◽  
Author(s):  
Eny Kusrini ◽  
Nofrijon Sofyan ◽  
Dwi Marta Nurjaya ◽  
Santoso Santoso ◽  
Dewi Tristantini

Hydroxyapatite/chitosan (HApC) composite has been prepared by precipitation method and used for removal of heavy metals (Cr6+, Zn2+and Cd2+) from aqueous solution. The HAp and 3H7C composite with HAp:chitosan ratio of 3:7 (wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy-energy dispersive X-ray spectroscopy. The SEM results showed that HAp is spherical-shaped and crystalline, while chitosan has a flat structure. SEM micrograph of 3H7C composite reveals crystalline of HAp uniformly spread over the surface of chitosan. The crystal structure of HAp is maintained in 3H7C composite. Chitosan affects the adsorption capacity of HAp for heavy metal ions; it binds the metal ions as well as HAp. The kinetic data was best described by the pseudo-second order. Surface adsorption and intraparticle diffusion take place in the mechanism of adsorption process. The binding of HAp powder with chitosan made the capability of composite to removal of Cr6+, Zn2+and Cd2+from aqueous solution effective. The order of removal efficiency (Cr6+> Cd2+> Zn2+) was observed.


Sign in / Sign up

Export Citation Format

Share Document