scholarly journals Electrically Controllable Active Plasmonic Directional Coupler of Terahertz Signal based on a Periodical Dual Grating Gate Graphene Structure

Author(s):  
Mikhail Yu. Morozov ◽  
Vyacheslav V. Popov ◽  
Denis V. Fateev

Abstract We propose a concept of an electrically controllable plasmonic directional coupler of terahertz signal based on a periodical structure with an active (with inversion of the population of free charge carriers) graphene with a dual grating gate and numerically calculate its characteristics. Proposed concept of plasmon excitation by using the grating gate offers highly effective coupling of incident electromagnetic wave to plasmons as compared with the excitation of plasmons by a single diffraction element. The coefficient which characterizes the efficiency of transformation of the electromagnetic wave into the propagating plasmon has been calculated. This transformation coefficient substantially exceeds the unity (exceeding 6 in value) due to amplification of plasmons in the studied structure by using pumped active graphene. We have shown that applying different dc voltages to different subgratings of the dual grating gate allows for exciting the surface plasmon in graphene, which can propagate along or opposite the direction of the structure periodicity, or can be a standing plasma wave for the same frequency of the incident terahertz wave. The coefficient of unidirectionality, which is the ratio of the plasmon power flux propagating along (opposite) the direction of the structure periodicity to the sum of the absolute values of plasmon power fluxes propagating in both directions, could reach up to 80 percent. Two different methods of the plasmon propagation direction switching are studied and possible application of the found effects are suggested.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mikhail Yu. Morozov ◽  
Vyacheslav V. Popov ◽  
Denis V. Fateev

AbstractWe propose a concept of an electrically controllable plasmonic directional coupler of terahertz signal based on a periodical structure with an active (with inversion of the population of free charge carriers) graphene with a dual grating gate and numerically calculate its characteristics. Proposed concept of plasmon excitation by using the grating gate offers highly effective coupling of incident electromagnetic wave to plasmons as compared with the excitation of plasmons by a single diffraction element. The coefficient which characterizes the efficiency of transformation of the electromagnetic wave into the propagating plasmon has been calculated. This transformation coefficient substantially exceeds the unity (exceeding 6 in value) due to amplification of plasmons in the studied structure by using pumped active graphene. We have shown that applying different dc voltages to different subgratings of the dual grating gate allows for exciting the surface plasmon in graphene, which can propagate along or opposite the direction of the structure periodicity, or can be a standing plasma wave for the same frequency of the incident terahertz wave. The coefficient of unidirectionality, which is the ratio of the plasmon power flux propagating along (opposite) the direction of the structure periodicity to the sum of the absolute values of plasmon power fluxes propagating in both directions, could reach up to 80 percent. Two different methods of the plasmon propagation direction switching are studied and possible application of the found effects are suggested.


2020 ◽  
Vol 312 ◽  
pp. 206-212
Author(s):  
Ivan L. Tkhorzhevskiy ◽  
Anton D. Zaitsev ◽  
Petr S. Demchenko ◽  
Dmitry V. Zykov ◽  
Aleksei V. Asach ◽  
...  

In the present paper we demonstrate and compare different properties of Bi and Bi1-xSbx thin films placed on polyimide (PI) substrate in frequency range from 0.2 to 1.0 THz. Bi films with a thickness of 40, 105 and 150 nm have been studied as well as 150 nm Bi1-xSbx solid solutions with Sb concentration of 5, 8, 12 and 15 %. An effective refractive index and permittivity of whole substrate/film structures have been derived by using terahertz time-domain spectroscopy (THz-TDS) method. These measurements have shown the positive phase shift in PI substrate with a thickness of 42 μm and revealed that it is barely transparent in studied frequency range, but the whole substrate/film structure provides the negative phase shift of terahertz wave. It was shown that the permittivity depends on mobility of charge carriers which is driven by film thickness and antimony content.


2009 ◽  
Vol 631-632 ◽  
pp. 299-304 ◽  
Author(s):  
Soshu Kirihara ◽  
Toshiki Niki ◽  
Masaru Kaneko

Fabrication and terahertz wave properties of alumina micro photonic crystals with a diamond structure were investigated. The three-dimensional diamond structure was designed on a computer using 3D-CAD software. Acrylic diamond structures with alumina particles dispersion were formed by using micro-stereolithography. Fabricated precursors were dewaxed and sintered in the air. The electromagnetic wave properties were measured by terahertz time-domain spectroscopy. A complete photonic band gap was observed at the frequency range from 0.40 to 0.47 THz, and showed good agreement with the simulation results calculated by the plane wave expansion method. Moreover, a localized mode was obtained by introducing a plane defect between twinned diamond structures. The one-way transmission of the electromagnetic wave was realized by using this twinned photonic crystal with the graded diamond structure. They corresponded to the simulation by the transmission line modeling (TLM) method.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 89 ◽  
Author(s):  
Jian Li ◽  
Pablo Jiménez-Calvo ◽  
Erwan Paineau ◽  
Mohamed Nawfal Ghazzal

The photo-conversion efficiency is a key issue in the development of new photocatalysts for solar light driven water splitting applications. In recent years, different engineering strategies have been proposed to improve the photogeneration and the lifetime of charge carriers in nanostructured photocatalysts. In particular, the rational design of heterojunctions composites to obtain peculiar physico-chemical properties has achieved more efficient charge carriers formation and separation in comparison to their individual component materials. In this review, the recent progress of sulfide-based heterojunctions and novel nanostructures such as core-shell structure, periodical structure, and hollow cylinders is summarized. Some new perspectives of opportunities and challenges in fabricating high-performance photocatalysts are also discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 346
Author(s):  
Alexander Zharov ◽  
Zacharias Viskadourakis ◽  
George Kenanakis ◽  
Vanessa Fierro ◽  
Alain Celzard

In this study, we experimentally demonstrated the control of light transmission through a slab of plasmonic liquid metacrystal by an external electric field. By applying the external static field, we were able to induce macroscopic anisotropy, which caused the polarization-dependent suppression of transmission at resonant frequencies. Such behavior indicates the selective plasmon excitation governed by the orientation of the meta-atoms with respect to the polarization of the electromagnetic wave. The problem of light transmission through a plasmonic liquid metacrystal was analyzed theoretically from first principles, and the obtained results were compared with the experimental data.


Author(s):  
И.М. Моисеенко ◽  
В.В Попов ◽  
Д.В. Фатеев

The amplification of electromagnetic terahertz radiation in a structure with two layers of hydrodynamic graphene with a direct electric current is studied theoretically. The hydrodynamic conductivity of graphene is investigated. It is shown that the real part of the graphene conductivity can be negative in the terahertz frequency range at the drift velocities of charge carriers in graphene that are lower than the phase velocity of the electromagnetic wave. For small wavevectors of a terahertz wave incident on a graphene structure, the spatial dispersion insignificantly contributes to the hydrodynamic graphene conductivity. Because of this, the amplification efficiency does not depend on the direction of currents in each of the graphene layers. It is shown that graphene with direct electric current can be used to create THz amplifiers operating at room temperature.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1508
Author(s):  
Xingchen Yang ◽  
Chaohai Du ◽  
Ziwen Zhang ◽  
Juanfeng Zhu ◽  
Tiejun Huang ◽  
...  

Terahertz waves generated by vacuum electron devices have been successfully applied in dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP-NMR) technology to significantly enhance the sensitivity of high-field NMR. To reduce the magnetic field interference, the high-power terahertz wave source and the NMR spectrometer need to be separated by a few meters apart. Corrugated horns and directional couplers are key components for shaping high linearly polarized terahertz Gaussian beam and accurately coupling electromagnetic power in the transmission system. In this paper, a corrugated TE11-HE11 mode converter and a three-port directional coupler realized by its inner cylindrical wire array are proposed for a 330 GHz/500 MHz DNP-NMR system. The output mode of the mode converter presents a characteristic of highly linear polarization, which is 98.8% at 330 GHz for subsequent low loss transmission. The designed three-port directional coupler can produce approximately −33 dB electromagnetic wave power on port 3 in the frequency range between 300–360 GHz stably, which can be used to measure the electromagnetic wave power of the transmission line in real-time. The designed mode converter and direction coupler can be installed and replaced easily in the corrugated waveguide transmission system.


Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.


Author(s):  
Klaus-Ruediger Peters

Environmental SEM operate at specimen chamber pressures of ∼20 torr (2.7 kPa) allowing stabilization of liquid water at room temperature, working on rugged insulators, and generation of an environmental secondary electron (ESE) signal. All signals available in conventional high vacuum instruments are also utilized in the environmental SEM, including BSE, SE, absorbed current, CL, and X-ray. In addition, the ESEM allows utilization of the flux of charge carriers as information, providing exciting new signal modes not available to BSE imaging or to conventional high vacuum SEM.In the ESEM, at low vacuum, SE electrons are collected with a “gaseous detector”. This detector collects low energy electrons (and ions) with biased wires or plates similar to those used in early high vacuum SEM for SE detection. The detector electrode can be integrated into the first PLA or positioned at any other place resulting in a versatile system that provides a variety of surface information.


Sign in / Sign up

Export Citation Format

Share Document