scholarly journals Subthreshold Analytical Model of Asymmetric Gate Stack Triple Metal Gate All Around MOSFET (AGSTMGAAFET) for Improved Analog Applications

Author(s):  
Arvind Ganesh ◽  
Kshitij Goel ◽  
Jaskeerat Singh Mayall ◽  
Sonam Rewari

Abstract In this paper, we have proposed a 2D analytical model for Asymmetric gate stack triple metal gate MOSFET(AGSTMGAAFET) and performed a comparative analysis with the simulation results obtained using the SILVACO 3D simulation software. Existing devices such as gate all around single metal (SMGAAFET), gate all around triple metal (TMGAAFET), gate stack single metal (GSSMGAAFET), gate stack triple metal (GSTMGAAFET) and asymmetric gate stack single metal (AGSTMGAAFET) have been compared with our proposed structure AGSTMGAAFET. Our device provides excellent performance in terms of drain current, transconductance, output conductance, current gain, maximum transducer power gain which shows our device’s suitability for various analog applications moreover the potential and electric field plots obtained have twostep profile and extremely low electric field near the drain region which ordains our device with the ability to suppress various SCE’s like DIBL and hot-carrier effect. The analytical model and simulation results show good convergence in values which validate the correctness of the proposed model.

2016 ◽  
Vol 33 (2) ◽  
pp. 61-67 ◽  
Author(s):  
Arash Dehzangi ◽  
Farhad Larki ◽  
Sawal Hamid Md Ali ◽  
Sabar Derita Hutagalung ◽  
Md Shabiul Islam ◽  
...  

Purpose The purpose of this paper is to analyse the operation of p-type side gate junctionless silicon transistor (SGJLT) in accumulation region through experimental measurements and 3-D TCAD simulation results. The variation of electric field components, carrier’s concentration and valence band edge energy towards the accumulation region is explored with the aim of finding the origin of SGJLT performance in the accumulation operational condition. Design/methodology/approach The device is fabricated by atomic force microscopy nanolithography on silicon-on-insulator wafer. The output and transfer characteristics of the device are obtained using 3-D Technology Computer Aided Design (TCAD) Sentaurus software and compared with experimental measurement results. The advantages of AFM nanolithography in contact mode and Silicon on Insulator (SOI) technology were implemented to fabricate a simple structure which exhibits the behaviour of field effect transistors. The device has 200-nm channel length, 100-nm gate gap and 4 μm for the distance between the source and drain contacts. The characteristics of the fabricated device were measured using an Agilent HP4156C semiconductor parameter analyzer (SPA). A 3-D TCAD Sentaurus tool is used as the simulation platform. The Boltzmann statistics is adopted because of the low doping concentration of the channel. Hydrodynamic model is taken to be as the main transport model for all simulations, and the quantum mechanical effects are ignored. A doping dependent Masetti mobility model was also included as well as an electric field dependent model with Shockley–Read–Hall (SRH) carrier recombination/generation. Findings We have obtained that the device is a normally on state device mainly because of the lack of work functional difference between the gate and the channel. Analysis of electric field components’ variation, carrier’s concentration and valence band edge energy reveals that increasing the negative gate voltage drives the device into accumulation region; however, it is unable to increase the drain current significantly. The positive slope of the hole quasi-Fermi level in the accumulation region presents mechanism of carriers’ movement from source to drain. The influence of electric field because of drain and gate voltage on charge distribution explains a low increasing of the drain current when the device operates in accumulation regime. Originality/value The proposed side gate junctionless transistors simplify the fabrication process, because of the lack of gate oxide and physical junctions, and implement the atomic force microscopy nanolithography for fabrication process. The optimized structure with lower gap between gate and channel and narrower channel would present the output characteristics near the ideal transistors for next generation of scaled-down devices in both accumulation and depletion region. The presented findings are verified through experimental measurements and simulation results.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3672
Author(s):  
Haiying Lu ◽  
Yingna Li ◽  
Jiahong Zhang

The three-dimensional (3D) simulation model of a lithium niobate (LiNbO3, LN) optical waveguide (OWG) electric field sensor has been established by using the full-wave electromagnetic simulation software. The influences of the LN substrate and the packaging material on the resonance frequency of the integrated OWG electric field sensor have been simulated and analyzed. The simulation results show that the thickness of the LN substrate has a great influence on the resonant frequency of the sensor (≈33.4%). A sensor with a substrate thickness of 1 mm has been designed, fabricated, and experimentally investigated. Experimental results indicate that the measured resonance frequency is 7.5 GHz, which nearly coincides with the simulation results. Moreover, the sensor can be used for the measurement of the nanosecond electromagnetic impulse (NEMP) in the time domain from 1.29 kV/m to 100.97 kV/m.


Author(s):  
Sidhartha Dash ◽  
Guru Prasad Mishra

Introduction: Here, we have presented an n-channel cylindrical gate tunnel FET with drain underlap engineering (CGT-DU) and the simulation process is carried out using 3-D device simulator from Synopsys. Methods: The analog and radio frequency (RF) performance of the device has been studied extensively in terms of electric field, energy band analysis, drain current, gain bandwidth product, unity gain cut‐off frequency, transconductance frequency product, and maximum oscillation frequency for different values of drain underlap length. Results: The increase in underlap length in CGT paves way for substantial reduction in ambipolar current without degrading the ON-state current. The proposed device exhibits lower lateral electric field, larger tunneling length and lower gate to drain capacitance at the drain end with higher underlap length. Conclusion: CGT-DU exhibits superior ambipolar and RF performance without degrading ON-state current and threshold voltage.


2012 ◽  
Vol 271-272 ◽  
pp. 21-25
Author(s):  
Hu Jun Jia ◽  
Yin Tang Yang ◽  
Lian Jin Zhang ◽  
Bao Xing Duan

A novel 4H-SiC MESFET with stepped-channel (stepped-spacer) structure is proposed for the first time and analyzed by 2D numerical simulation. Based on the stepped buried oxide structure of SOI which can produce additional electrical Electric field peaks, much more advantages can be obtained through a stepped-channel structure compared to that of the field terminal technology, such as an obvious increase of the breakdown voltage which is equal to the electric field to the path integral, and the lower capacitances lead to a higher cut-off frequency. The simulation results show that a 100% higher saturated drain current and a 153% larger breakdown voltage can be obtained utilizing the stepped-channel structure MESFET than those of the conventional counterpart.


2019 ◽  
Author(s):  
Chem Int

Model was developed for the prediction of polarization characteristics in a dielectric material exhibiting piezoelectricity and electrostriction based on mathematical equations and MATLAB computer simulation software. The model was developed based on equations of polarization and piezoelectric constitutive law and the functional coefficient of Lead Zirconate Titanate (PZT) crystal material used was 2.3×10-6 m (thickness), the model further allows the input of basic material and calculation of parameters of applied voltage levels, applied stress, pressure, dielectric material properties and so on, to generate the polarization curve, strain curve and the expected deformation change in the material length charts. The mathematical model revealed that an application of 5 volts across the terminals of a 2.3×10-6 m thick dielectric material (PZT) predicted a 1.95×10-9 m change in length of the material, which indicates piezoelectric properties. Both polarization and electric field curve as well as strain and voltage curve were also generated and the result revealed a linear proportionality of the compared parameters, indicating a resultant increase in the electric field yields higher polarization of the dielectric materials atmosphere.


2021 ◽  
Vol 48 (4) ◽  
pp. 53-61
Author(s):  
Andrea Marin ◽  
Carey Williamson

Craps is a simple dice game that is popular in casinos around the world. While the rules for Craps, and its mathematical analysis, are reasonably straightforward, this paper instead focuses on the best ways to cheat at Craps, by using loaded (biased) dice. We use both analytical modeling and simulation modeling to study this intriguing dice game. Our modeling results show that biasing a die away from the value 1 or towards the value 5 lead to the best (and least detectable) cheating strategies, and that modest bias on two loaded dice can increase the winning probability above 50%. Our Monte Carlo simulation results provide validation for our analytical model, and also facilitate the quantitative evaluation of other scenarios, such as heterogeneous or correlated dice.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


Sign in / Sign up

Export Citation Format

Share Document