scholarly journals Melatonin reduces neuroinflammation and improves axonal hypomyelination by modulating M1/M2 microglia polarization via JAK2-STAT3-telomerase pathway in postnatal rats exposed to lipopolysaccharide

Author(s):  
Qiuping Zhou ◽  
Lanfen Lin ◽  
Haiyan Li ◽  
Shuqi Jiang ◽  
Huifang Wang ◽  
...  

Abstract Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be through modulating microglial polarization from M1 phenotype to M2 through JAK2/STAT3/telomerase pathway. We reported here that melatonin, indeed, not only can it reduce the neurobehavioral disturbances in LPS injected rats, but it can also dampen microglia mediated inflammation. Thus, in LPS + melatonin group, expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with TERT or MT1. In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. That melatonin can improve hypomyelination was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the melatonin effects on LPS treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization that would ultimately contribute to attenuation of PWMD.

Author(s):  
Qiuping Zhou ◽  
Lanfen Lin ◽  
Haiyan Li ◽  
Huifang Wang ◽  
Shuqi Jiang ◽  
...  

AbstractMicroglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD.


2021 ◽  
Author(s):  
Yuqi Ma ◽  
Peixia Fan ◽  
Rui Zhao ◽  
Yinghua Zhang ◽  
Xianwei Wang ◽  
...  

Abstract BackgroundThe inflammatory response caused by microglia in the central nervous system plays an important role in Alzheimer's disease. Neuregulin-1 (NRG1) is a member of the neuregulin family and has been demonstrated to have anti-inflammatory properties. The relationship between NRG1, microglia phenotype and neuroinflammation remains unclear.Materials and MethodsBV2 cells were used to examine the mechanism of NRG1 in regulating microglia polarization. Neuronal apoptosis, inflammatory factors TNF-α and iNOS, microglia polarization, ErbB4 and NF-κB p65 expression were assessed.ResultsWe found that exogenous NRG1 treatment or overexpression improved microglial activity and reduced the secretion of the inflammatory factors TNF-α and iNOS in vitro. The expression of Bax in SH-SY5Y neuron cells incubated with medium collected from the NRG1 treatment group decreased. Additionally, our study showed that NRG1 treatment reduced the levels of the M1 microglia markers CD120 and iNOS and increased the levels of the M2 microglia markers CD206 and Arg-1. Furthermore, we observed that NRG1 treatment attenuated Aβ-induced NF-κB activation and promoted the expression of p-ErbB4 and that knockdown of ErbB4 abrogated the effects of NRG1 on NF-κB, Bax levels and M2 microglial polarization. ConclusionNRG1 inhibits the release of inflammatory factors in microglia and regulates the switching of the M1/M2 microglia phenotype, most likely via ErbB4-dependent inhibition of the NF-κB pathway.


2020 ◽  
Author(s):  
Cuicui Yang ◽  
Shili Gong ◽  
Xiaoping Chen ◽  
Mingyang Wang ◽  
Li Zhang ◽  
...  

Abstract Background: Microglia polarization plays an important role in poststroke recovery. Inhibition of proinflammatory (M1) polarization and promotion of anti-inflammatory (M2) polarization of microglia are potential therapeutic strategies for inflammation reduction and neuronal recovery after stroke. Analgecine (AGC), the extracts of Vaccin a variola-inoculated rabbit skin, is used to treat patients with chronic low back pain due to degenerative vertebral disorders. Here, we evaluated the neuroprotective effect of AGC in stroke and investigate anti-inflammatory mechanism of AGC on microglia-mediated neural damage.Methods: Sprague-Dawley (SD) rats underwent 120 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. We injected AGC intravenously into rats starting 3 h after the onset of MCAO. Then we investigated the effect of AGC on neurological impairment, neuronal loss and inflammatory cytokines. For in vitro study, we examined the effect of AGC on microglial polarization in oxygen-glucose deprivation/reperfusion (OGD/R) or LPS/IFN-γ induced microglia cells and further investigated neuroprotective effect of ACG in microglia-mediated neural damage based on the direct or indirect co-culture systems. Finally, TLR4/Myd88/ NF-κB pathway was detected in OGD/R-induced microglia cells with or without Myd88 siRNA transfection.Results: AGC treatment reduced the neurological deficits and suppressed neuronal loss. In terms of inflammatory cytokines, AGC inhibited the release of pro-inflammatory cytokines and elevated the content of anti-inflammatory cytokines in vivo (SD rats) and in vitro (microglia). We further showed that AGC promoted M1 to M2 phenotypic transition of microglia in OGD/R or LPS/IFN-γ induced microglia cells. Based on the direct or indirect co-culture systems, we found AGC indirectly inhibits LPS/IFN-γ-induced neuronal damage by modulating microglial polarization. Moreover, AGC suppressed the nuclear translocation of the phosphorylation of NF-κB p65 by inhibiting the TLR4/Myd88/TRAF6 but not TLR9 signaling. We also confirmed that AGC-regulated TLR4 inhibition partly dependent on Myd88 in a Myd88 depletion cell line.Conclusion: Our findings provide a new understanding of AGC in neuroprotection by inhibiting M1 microglial polarization and promoting anti-inflammation by suppressing TLR4 MyD88-dependent and MyD88-independent pathways. Thus, AGC treatment may represent a novel approach in inflammation reduction or poststroke recovery.


2021 ◽  
Vol 10 (3) ◽  
pp. 313-318
Author(s):  
Deden Winda Suwandi ◽  
Tina Rostnawati ◽  
Muchtaridi Muchtaridi ◽  
Anas Subarnas

Introduction: Selligueain A derived from the roots of Polypodium feei was shown to have anti-inflammatory activity, which was tested in vivo on the rats’ paw edema induced by carrageenan. The aim of this study was to evaluate the anti-inflammatory mechanism of selligueain A in vitro against the production of pro-inflammatory mediators. Methods: In this study, RAW264.7 cells were used as an inflammatory cell model, and observations were made on the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and tumour necrosis factor-α (TNF-α). The NO concentration was measured by the Griess reaction, and the iNOS enzyme and the TNF-α concentrations were determined by the ELISA method. Cell viability was assessed by the [3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) test. Results: Selligueain A at concentrations of 100 and 150 µM suppressed the production of NO, iNOS, and TNF-α in RAW264.7 cells stimulated by lipopolysaccharide (LPS). The concentration of 150 µM showed the highest inhibition of NO, iNOS, and TNF-α mediators with the percentage inhibition of 64.85, 55.01, and 48.54%, respectively. Conclusion: This study shows that selligueain A has anti-inflammatory activity through inhibition of NO, iNOS, and TNF-α production in RAW264.7 macrophage cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Suhui Yu ◽  
Jianming Xie ◽  
Yukai Xiang ◽  
Shengjie Dai ◽  
Dinglai Yu ◽  
...  

Our previous studies verified the potent anti-inflammatory effects against severe acute pancreatitis (SAP) of AT-Lipoxin A4 and their analogues. However, the anti-inflammatory effects of AT-Lipoxin A4 on SAP-associated lung injury are not thoroughly known. We used western blot, polymerase chain reaction (PCR), and immunofluorescence to investigate the downregulation of TNF-α signals in cellular and animal models of SAP-associated lung injury following AT-Lipoxin A4 intervention. In vitro, we found that AT-Lipoxin A4 markedly suppressed protein expression in TNF-α signals in human pulmonary microvascular endothelial cell, such as tumor necrosis factor receptor-associated factor 2 (TRAF2), TNF-R1-associated death domain (TRADD), receptor-interacting protein (RIP), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Moreover, AT-Lipoxin A4 inhibited downstream signals activated by TNF-α, including NF-κB/p65, JNK/MAPK, and ERK/MAPK. In vivo, AT-Lipoxin A4 significantly decreased pathological scores of the pancreas and lungs and the serum levels of IL-6 and TNF-α. Immunofluorescence, western blotting, and real-time PCR assay showed that AT-Lipoxin A4 significantly attenuated the expression of TNF-R1, TRADD, TRAF2, and RIP in the lungs of SAP rats. In addition, the activation of NF-κB was also downregulated by AT-Lipoxin A4 administration as compared with SAP rats. AT-Lipoxin A4 could inhibit the production of proinflammatory mediators and activation of TNF-α downstream signals such as NF-κB and MAPK. Downregulation of TNF-α signals by AT-Lipoxin A4 may be a significant mechanism in the attenuation of SAP-associated lung injury.


2015 ◽  
Vol 114 (08) ◽  
pp. 337-349 ◽  
Author(s):  
Dragana Komnenov ◽  
Corey Scipione ◽  
Zainab Bazzi ◽  
Justin Garabon ◽  
Marlys Koschinsky ◽  
...  

SummaryThrombin activatable fibrinolysis inhibitor (TAFI) is the zymogen form of a basic carboxypeptidase (TAFIa) with both anti-fibrinolytic and anti-inflammatory properties. The role of TAFI in inflammatory disease is multifaceted and involves modulation both of specific inflammatory mediators as well as of the behaviour of inflammatory cells. Moreover, as suggested by in vitro studies, inflammatory mediators are capable of regulating the expression of CPB2, the gene encoding TAFI. In this study we addressed the hypothesis that decreased TAFI levels observed in inflammation are due to post-transcriptional mechanisms. Treatment of human HepG2 cells with pro-inflammatory cytokines TNFα, IL-6 in combination with IL-1β, or with bacterial lipopolysaccharide (LPS) decreased TAFI protein levels by approximately two-fold over 24 to 48 hours of treatment. Conversely, treatment of HepG2 cells with the anti-inflammatory cytokine IL-10 increased TAFI protein levels by two-fold at both time points. We found that the mechanistic basis for this modulation of TAFI levels involves binding of tristetraprolin (TTP) to the CPB2 3′-UTR, which mediates CPB2 mRNA destabilisation. In this report we also identified that HuR, another ARE-binding protein but one that stabilises transcripts, is capable of binding the CBP2 3’UTR. We found that pro-inflammatory mediators reduce the occupancy of HuR on the CPB2 3’-UTR and that the mutation of the TTP binding site in this context abolishes this effect, although TTP and HuR appear to contact discrete binding sites. Interestingly, all of the mediators tested appear to increase TAFI protein expression in THP-1 macrophages, likewise through effects on CPB2 mRNA stability.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Quanxin Ma ◽  
Kai Wang ◽  
Qinqin Yang ◽  
Shun Ping ◽  
Weichun Zhao ◽  
...  

Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI), and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB) in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β), IL-6, monocyte chemotactic protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.


2020 ◽  
Vol 40 (9) ◽  
pp. 2070-2083
Author(s):  
Lin-Lin Wei ◽  
Ning Ma ◽  
Kun-Yi Wu ◽  
Jia-Xing Wang ◽  
Teng-Yue Diao ◽  
...  

Objective: Emerging evidence suggests that C3aR (C3a anaphylatoxin receptor) signaling has protective roles in various inflammatory-related diseases. However, its role in atherosclerosis has been unknown. The purpose of the study was to investigate the possible protective role of C3aR in aortic atherosclerosis and explore molecular and cellular mechanisms involved in the protection. Approach and Results: C3ar −/− /Apoe −/− mice were generated by cross-breeding of atherosclerosis-prone Apoe −/− mice and C3ar −/− mice. C3ar −/− /Apoe −/− mice and Apoe −/− mice (as a control) underwent high-fat diet for 16 weeks were assessed for (1) atherosclerotic plaque burden, (2) aortic tissue inflammation, (3) recruitment of CD11b + leukocytes into atherosclerotic lesions, and (4) systemic inflammatory responses. Compared with Apoe −/− mice, C3ar −/− /Apoe −/− mice developed more severe atherosclerosis. In addition, C3ar −/− /Apoe −/− mice have increased local production of proinflammatory mediators (eg, CCL2 [chemokine (C-C motif) ligand 2], TNF [tumor necrosis factor]-α) and infiltration of monocyte/macrophage in aortic tissue, and their lesional macrophages displayed an M1-like phenotype. Local pathological changes were associated with enhanced systemic inflammatory responses (ie, elevated plasma levels of CCL2 and TNF-α, increased circulating inflammatory cells). In vitro analyses using peritoneal macrophages showed that C3a stimulation resulted in upregulation of M2-associated signaling and molecules, but suppression of M1-associated signaling and molecules, supporting the roles of C3a/C3aR axis in mediating anti-inflammatory response and promoting M2 macrophage polarization. Conclusions: Our findings demonstrate a protective role for C3aR in the development of atherosclerosis and suggest that C3aR confers the protection through C3a/C3aR axis–mediated negative regulation of proinflammatory responses and modulation of macrophage toward the anti-inflammatory phenotype.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Rodolfo Abarca-Vargas ◽  
Vera L. Petricevich

Background. Different pharmacological properties, such as antioxidant, antiproliferative, and anti-inflammatory properties, have been described among natural products. We previously described that the Bougainvillea xbuttiana (Variety Orange) ethanolic extract (BxbO) has an anti-inflammatory effect; however, this action is not fully understood. In this study, the action of the BxbO extract on the secretion of inflammatory mediators in two experimental models, in vitro and in vivo, after LPS challenge was evaluated. Methods. Peritoneal macrophages were obtained from female BALB/c mice and LPS-challenged with or without the BxbO extract. For the evaluation of mediators, the supernatants at 0, 12, 24, 36, and 48 hours were collected. For in vivo estimation, groups of female BALB/c mice were first intraperitoneously injected with different amounts of LPS and later administered the oral BxbO extract (v.o.) for 144 hours. To understand the mechanism of action, sera obtained from mice were collected at 0, 2, 4, 8, 12, and 24 hours after LPS challenge (with or without BxbO) for the detection of mediators. Results. The results showed that, in both peritoneal macrophages and sera of mice treated with the BxbO extract 1 hour before or together with LPS challenge, proinflammatory cytokines and nitric oxide release were unquestionably repressed. In contrast, in both systems studied here, the IL-10 levels were elevated to 5 to 9 times. At lethal doses of LPS, the BxbO extract treatment was found to protect animals from death. Conclusions. The results revealed that the inhibitory, protective, and benign effects of the BxbO extract were due to its capacity to balance the secretion of mediators.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 709 ◽  
Author(s):  
Blanca Lorenzo-Veiga ◽  
Patricia Diaz-Rodriguez ◽  
Carmen Alvarez-Lorenzo ◽  
Thorsteinn Loftsson ◽  
Hakon Hrafn Sigurdsson

The aim of this study was to design and evaluate novel cyclodextrin (CD)-based aggregate formulations to efficiently deliver nepafenac topically to the eye structure, to treat inflammation and increase nepafenac levels in the posterior segment, thus attenuating the response of inflammatory mediators. The physicochemical properties of nine aggregate formulations containing nepafenac/γ-CD/hydroxypropyl-β (HPβ)-CD complexes as well as their rheological properties, mucoadhesion, ocular irritancy, corneal and scleral permeability, and anti-inflammatory activity were investigated in detail. The results were compared with a commercially available nepafenac suspension, Nevanac® 3 mg/mL. All formulations showed microparticles, neutral pH, and negative zeta potential (–6 to –27 mV). They were non-irritating and nontoxic and showed high permeation through bovine sclera. Formulations containing carboxymethyl cellulose (CMC) showed greater anti-inflammatory activity, even higher than the commercial formulation, Nevanac® 0.3%. The optimized formulations represent an opportunity for topical instillation of drugs to the posterior segment of the eye.


Sign in / Sign up

Export Citation Format

Share Document