scholarly journals Targeting PP2A with lomitapide suppresses colorectal tumorigenesis through the activation of AMPK/Beclin1-mediated autophagy

Author(s):  
Qian Zuo ◽  
Long Liao ◽  
Ziting Yao ◽  
Yaping Liu ◽  
Dingkang Wang ◽  
...  

Abstract Background Colorectal cancer (CRC) is one of the most malignant cancer worldwide, and the limited efficacy of existing treatments is the leading cause of death in patients with CRC. Thus, novel drugs for CRC treatment are urgently needed. Methods We screened an FDA-approved small-molecule library upon HCT116 cells, and identified lomitapide as a novel CRC anticancer compound. Then we confirmed the activities of lomitapide on CRC cells by WST-1 assay, colony formation, and flow cytometry. RNA sequencing and GO analysis were used to investigate the mechanisms underlying the anticancer effects of lomitapide. LiP-SMap was introduced to search for the potential targets of lomitapide. The in vivo experiment was conducted to confirm the therapeutic efficiency and safety of lomitapide as an anticancer agent. Results Lomitapide exhibited remarkable antitumor properties in vitro and in vivo, while activated autophagy is characterized by GO analysis as a key biological process in lomitapide-induced CRC repression. Moreover, lomitapide stimulated mitochondrial dysfunction-mediated AMPK activation, resulting in increased AMPK phosphorylation and enhanced Beclin1/Atg14/Vps34 interactions, provoking autophagy induction. LiP-SMap analysis showed that PP2A was the direct target of lomitapide, and the bioactivity of lomitapide was attenuated in PP2A-deficient cells, suggesting that the anticancer effect of lomitapide occurs in a PP2A-dependent manner. Conclusions Our results indicate that lomitapide activates AMPK-regulated autophagy to inhibit the proliferation and tumorigenesis of CRC cells by directly targeting PP2A, and can be a novel therapeutic agent for the treatment of CRC patients.

Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 488
Author(s):  
Lichuan Wu ◽  
Ke Ye ◽  
Sheng Jiang ◽  
Guangbiao Zhou

Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that harbors a great many different organisms and natural products, to identify novel drugs and drug candidates to fight against malignant neoplasms. The marine compounds show potent anticancer activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin′s disease. This review provides a summary of the anticancer effects and mechanisms of action of selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin, zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as efficient isolation and synthesis of marine-derived natural compounds and derivatives.


2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092883
Author(s):  
Jie Chen ◽  
Chun-Yan Kang ◽  
Zhao-Xia Niu ◽  
Hui-Cong Zhou ◽  
Hong-Mei Yang

Objective To investigate the in vitro and in vivo anticancer effects of a chalcone against KYSE-4 esophageal cancer cells. Methods A chalcone was synthesized via the molecular hybridization strategy based on the anticancer activity of chalcone and dithiocarbamate scaffolds. The anticancer effects of different concentrations of the chalcone derivative were compared in esophageal cancer cells. Results This chalcone displayed strong inhibitory effects on esophageal cancer cell growth with an IC50 of 1.06 μM in KYSE-4 cells. Analysis of the mechanism revealed that the derivative obviously inhibited KYSE-4 cell growth, migration, and invasion in a concentration-dependent manner. Furthermore, the compound regulated migration-related biomarkers (E-cadherin, N-cadherin, and Slug) and inhibited the Wnt/β-catenin pathway. According to western blotting, this chalcone suppressed the expression of proline-rich protein 11 (PRR11) in a concentration- and time-dependent manner. Conclusions This chalcone might be a leading candidate for suppressing the growth and metastasis of esophageal cancer by downregulating PRR11 expression and inhibiting Wnt/β-catenin signaling.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jingtao Li ◽  
Hailiang Wei ◽  
Yonggang Liu ◽  
Qian Li ◽  
Hui Guo ◽  
...  

Background/Aim. Curcumin exhibits anticancer effects against various types of cancer including hepatocellular carcinoma (HCC). miR-21 has been reported to be involved in the malignant biological properties of HCC. However, whether miR-21 plays a role in curcumin-mediated treatment of HCC is unknown. The purpose of this study was to identify the potential functions and mechanisms of miR-21 in curcumin-mediated treatment of HCC. Methods. The anticancer effects of curcumin were assessed in vivo and in vitro. The underlying mechanism of miR-21 in curcumin-mediated treatment of HCC was assessed by quantitative real-time PCR (RT-qPCR), western blot, and Dual-Luciferase Reporter assays. Results. The present study revealed that curcumin suppressed HCC growth in vivo and inhibited HCC cell proliferation and induced cell apoptosis in a dose-dependent manner in vitro. Meanwhile, the curcumin treatment can downregulate miR-21 expression, upregulate TIMP3 expression, and inhibit the TGF-β1/smad3 signaling pathway. miR-21 inhibition enhanced the effect of curcumin on cell proliferation inhibition, apoptosis, and TGF-β1/smad3 signaling pathway inhibition in HepG2 and HCCLM3 cells. It demonstrated that TIMP3 was a direct target gene of miR-21. Interestingly, the effect of miR-21 inhibition on cell proliferation, apoptosis, and TGF-β1/smad3 signaling pathway in HepG2 and HCCLM3 cells exposed to curcumin was attenuated by TIMP3 silencing. Conclusion. Taken together, the present study suggests that miR-21 is involved in the anticancer activities of curcumin through targeting TIMP3, and the mechanism possibly refers to the inhibition of TGF-β1/smad3 signaling pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Shengnuo Fan ◽  
Bei Zhang ◽  
Ping Luan ◽  
Beibei Gu ◽  
Qing Wan ◽  
...  

Disruption or deregulation of the autophagy system has been implicated in neurodegenerative disorders such as Alzheimer’s disease (AD). Aβplays an important role in this autophagic system. In many cases, autophagy is regulated by the phosphatidylinositol 3-phosphate kinase/AKT/mammalian target of rapamycin/p70 ribosomal protein S6 kinase (PI3K/AKT/mTOR/p70S6K) signaling pathway. However, whether this signaling pathway is involved in Aβ-induced autophagy in neuronal cells is not known. Here, we studied whether Aβ25-35 induces autophagy in HT22 cells and C57 mice and investigated whether PI3K is involved in the autophagy induction. We found that Aβ25-35 inhibited HT22 cell viability in a dose- and time-dependent manner. Aβ25-35 induced autophagosome formation, the conversion of microtubule-associated protein light chain 3 (LC3), and the suppression of the mTOR pathway both in vitro and in vivo. Furthermore, Aβ25-35 impaired the learning abilities of C57 mice. Our study suggests that Aβ25-35 induces autophagy and the PI3K/AKT/mTOR/p70S6K pathway is involved in the process, which improves our understanding of the pathogenesis of AD and provides an additional model for AD research.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jianye Xu ◽  
Jian Zhang ◽  
Zongpu Zhang ◽  
Zijie Gao ◽  
Yanhua Qi ◽  
...  

AbstractExosomes participate in intercellular communication and glioma microenvironment modulation, but the exact mechanisms by which glioma-derived exosomes (GDEs) promote the generation of the immunosuppressive microenvironment are still unclear. Here, we investigated the effects of GDEs on autophagy, the polarization of tumor-associated macrophages (TAMs), and glioma progression. Compared with normoxic glioma-derived exosomes (N-GDEs), hypoxic glioma-derived exosomes (H-GDEs) markedly facilitated autophagy and M2-like macrophage polarization, which subsequently promoted glioma proliferation and migration in vitro and in vivo. Western blot and qRT-PCR analyses indicated that interleukin 6 (IL-6) and miR-155-3p were highly expressed in H-GDEs. Further experiments showed that IL-6 and miR-155-3p induced M2-like macrophage polarization via the IL-6-pSTAT3-miR-155-3p-autophagy-pSTAT3 positive feedback loop, which promotes glioma progression. Our study clarifies a mechanism by which hypoxia and glioma influence autophagy and M2-like macrophage polarization via exosomes, which could advance the formation of the immunosuppressive microenvironment. Our findings suggest that IL-6 and miR-155-3p may be novel biomarkers for diagnosing glioma and that treatments targeting autophagy and the STAT3 pathway may contribute to antitumor immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document