scholarly journals Biochar from Oil Cakes: An Efficient Adsorbent for the Removal of Acid Dyes From Wool Dye House Effluent

Author(s):  
seiko jose ◽  
Reena Roy ◽  
Ava Phukan ◽  
Dinesh Shakyawar ◽  
Anuradha Sankaran

Abstract Textile dyeing industries are one of the major culprits for environmental pollution. The industries are adopting various processes for the removal of dyes and chemicals from the effluent before disposing to the land or water bodies. In the reported study, biochars were prepared from almond, coconut, and mustard oil cakes by chemical activation with phosphoric acid followed by low temperature pyrolysis. The ball milling technique was employed to reduce the particle size of the biochars below 300 nm. The synthesized biochars were used for the removal of color from the acid dye effluent from the wool dyeing unit. The results showed that very small quantities (2.0 %) of biochars are sufficient to remove around 92% color from the dye effluent. The batch adsorption and kinetic studies indicate the highest efficiency of color removal for the biochar derived from almond oil cake, followed by mustard and coconut. The adsorption properties of the synthesized biochars were found to be greatly depending on the type of oil cake used. It is concluded that the biochars produced from the oil cakes may be a partial replacement of petroleum based activated carbon for the color removal from wool textile dye effluent.

2019 ◽  
Vol 10 (1) ◽  
pp. 4706-4713

Clean water is an essential element for the survival of humans and nature. However, the tremendous growth in industrialization has degraded the water quality by introducing pollutants such as dyes into the main water bodies such as rivers. In this research, the locally collected agricultural wastes such as watermelon peel (Citrullus lanatus) and corn peel (Zea Mays) were tested on two types of synthetics dyes such Remazol Brilliant Violet 5R (RBV5) and Remazol Brilliant Blue R (RBBR). From the screening test, the watermelon peel achieved the highest color removal percentage with 44.8% and followed by corn’s peel with 18.89%. Both adsorbents were selected for the batch adsorption test by varying the parameters. Based on the results achieved from the batch adsorption test, the optimum removal of dye particles was achieved at the lowest concentration of dye solutions. The optimum pH value to achieve a high percentage of color removal is at pH3, which is acidic. In this case, the 3 g of adsorbent dosage achieved the highest percentage of color removal compared to 5 g. This could due to insufficient contact time. In addition, the chemical and physical characteristics of the adsorbents were analyzed using FESEM and FTIR respectively. By analyzing the surface texture and functional group, differences in the adsorbents before and after adsorption were noticed. Besides that, based on the obtained R2 values from the linear plotting, the Temkin isotherm model and pseudo-second-order kinetic model fitted well compared to other isotherm and kinetic models. In conclusion, the watermelon peel and corn peel are capable of removing dye particles in the industrial effluent under selective conditions with low cost while being environmentally friendly.


2012 ◽  
Vol 3 (1) ◽  
pp. 41-48 ◽  
Author(s):  
S. Sathian ◽  
G. Radha ◽  
V. Shanmugapriya ◽  
M. Rajasimman ◽  
C. Karthikeyan

2011 ◽  
Vol 366 ◽  
pp. 412-415
Author(s):  
Yu De Liu ◽  
Bo Quan Jiang ◽  
Zheng Qiang Xiao

The activated carbon loaded copper oxide catalyst was prepared from Hainan abandoned coconut shells using chemical activation method and applied in treatment of acid bright red GR simulation dyeing wastewater. The effects of phosphoric acid concentration, ratio of liquid to solid, activation time and activation temperature on the COD and color removal rates were investigated by orthogonal experiment. The results showed that the optimal values of the parameters above were 65% (in mass), 3:1, 2.5h and 500°C under the designed copper oxide loading conditions of calcining temperature 300°C,calcining time 3.0 h and use level of copper nitrate 15 mL. Using the prepared sample for the treatment of the wastewater, the COD and color removal rates reached 94.384% and 99.840%, respectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lingjie Liu ◽  
Min Ji ◽  
Fen Wang

Coconut granular activated carbon (CGAC) was modified by impregnating with ZnCl2solution to remove nitrate from aqueous solutions. Sorption isotherm and kinetic studies were carried out in a series of batch experiments. Nitrate adsorption of both ZnCl2-modified CGAC and CGAC fitted the Langmuir and Freundlich models. Batch adsorption isotherms indicated that the maximum adsorption capacities of ZnCl2-modified CGAC and CGAC were calculated as 14.01 mgN·g−1and 0.28 mgN·g−1, respectively. The kinetic data obtained from batch experiments were well described by pseudo-second-order model. The column study was used to analyze the dynamic adsorption process. The highest bed adsorption capacity of 1.76 mgN·g−1was obtained by 50 mgN·L−1inlet nitrate concentration, 20 g adsorbents, and 10 ml·min−1flow rate. The dynamic adsorption data were fitted well to the Thomas and Yoon–Nelson models with coefficients of correlationR2 > 0.834 at different conditions. Surface characteristics and pore structures of CGAC and ZnCl2-modified CGAC were performed by SEM and EDAX and BET and indicated that ZnCl2had adhered to the surface of GAC after modified. Zeta potential, Raman spectra, and FTIR suggested the electrostatic attraction between the nitrate ions and positive charge. The results revealed that the mechanism of adsorption nitrate mainly depended on electrostatic attraction almost without any chemical interactions.


2018 ◽  
Vol 8 (11) ◽  
pp. 2302 ◽  
Author(s):  
Abdelfattah Amari ◽  
Hatem Gannouni ◽  
Mohammad Khan ◽  
Mohammed Almesfer ◽  
Abubakr Elkhaleefa ◽  
...  

In this study, natural clay minerals with green appearance were treated with sulfuric acid. Mass percentage of acid (wt%), temperature (T), contact time (t) and liquid-to-solid mass ratio (R) are used as the prevailing factors that determine the extent of acid-activation. The values of these factors range from 15–50%, 60–90 °C, 1.5–6 h and 4–7, respectively. The study has focused on the structural changes as well as textural characteristics of the clay. Three activated clay samples were prepared under different treatment conditions. The samples were characterized using X-ray powder diffraction (XRD), fourier transform infrared (FTIR), scanning electron microscope (SEM), chemical analysis and N2 adsorption techniques. Characterization of the treated clay minerals exhibited significant structural changes to a greater extent of acid-activation, from being partially crystalline to being amorphous silica. The surface area and total pore volume of clay increased proportionally with the level of acid treatment. The average pore diameter behaved differently. During the strong acid treatment, a large increase in pore volume and the enlargement of the pore size distribution were observed. This suggests that considerable structural changes and partial destruction may have occurred in this condition. The removal of methylene blue, used as cationic dye, from aqueous solution by the batch adsorption technique on three prepared acid-activated clay samples was studied. The Langmuir model was found to agree well with the experimental data.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ali Q. Alorabi

In this work, magnetized activated Juniperus procera leaves (Fe3O4@AJPL) were successfully prepared via chemical activation of JPL and in situ coprecipitation with Fe3O4. A Fe3O4@AJPL nanocomposite was successfully applied for the elimination of malachite green (MG) dye from aqueous media. The prepared Fe3O4@AJPL adsorbent was characterized by SEM, EDX, TEM, XRD, FTIR, TGA, and BET surface area analyses. The BET surface area and pore size of the Fe3O4@AJPL nanocomposite were found to be 38.44 m2/g and 10.6 nm, respectively. The XRD and FTIR results indicated the formation of a Fe3O4@AJPL nanocomposite. Different parameters, such as pH of the solution (3–8), adsorbent dosage (10–100 mg), temperature (25–45°C), contact time (5-240 min), and initial MG concentrations (20–350 mg/L), for the elimination of the MG dye using Fe3O4@AJPL were optimized and found to be 7, 50 mg, 45°C, 120 min, and 150 mg/L, respectively. The nonlinear isotherm and kinetic studies exhibited a better fitting to second-order kinetic and Langmuir isotherm models, with a maximum monolayer adsorption capacity of 318.3 mg/g at 45°C, which was highly superior to the previously reported magnetic nanocomposite adsorbents. EDX analyses confirmed the presence of nitrogen on the Fe3O4@AJPL surface after MG adsorption. The calculated thermodynamic factors indicated endothermic and spontaneous processes. The desorption of MG dye from Fe3O4@AJPL was performed using a solution of 90% ethanol. Finally, it could be concluded that the designed Fe3O4@AJPL magnetic nanocomposite will be a cost-effective and promising adsorbent for the elimination of MG from aqueous media.


2021 ◽  
Vol 37 (2) ◽  
pp. 467-475
Author(s):  
Marina G. Xavier

Batch adsorption studies were done on aqueous solutions of Pb(NO3)2 at varying solute concentration, adsorbent dose, contact time, temperature, calcination temperatures and pH. Residual concentrations of the solute were found out using AAS and optimum conditions were studied. Adsorbent used in this study is locally available silicate rich mineral which closely resembles zeolites. The net negative charge on the framework of hydrated aluminosilicates is responsible for ion exchange property. Freundlich model was used to validate the results obtained from batch experiments plotting lnCe vs lnqe. Objective of this work is to study the kinetics of adsorption considering the interplay of particle diffusion in addition to proving the effectiveness as an adsorbent. A diffusion model also was also applied apart from kinetic model to analyze the experimental results more specifically. For maximizing the efficiency of the adsorption process and minimizing the time involved, variables like temperature, reactants and pH were manipulated using kinetic studies. It establishes the optimum reaction conditions for various experimental parameters in the process of adsorption.


2018 ◽  
Vol 3 (1) ◽  
pp. 4 ◽  
Author(s):  
Liudmyla Soldatkina ◽  
Marianna Zavrichko

Corn stalks (CS) were modified by a cationic surfactant, cetylpyridinium bromide (CPB), and used as an adsorbent (CS-CP) to remove anionic dyes [Acid Red (AR) and Acid Orange (AO)] from aqueous solutions. The FTIR analysis and the obtained calculations based on the determination of the adsorption capacity of CS towards CPB confirmed that the cationic surfactant had been adsorbed on the surface of corn stalks. Adsorption of the anionic dyes on modified corn stalks was investigated in a series of batch adsorption experiments at 303–328 K. The adsorption data were analyzed using Langmuir, Freundlich, and Temkin models. The Langmuir model was found to be more suitable for the experimental data of the anionic dyes on CS-CP than other adsorption models. Kinetic studies revealed that the pseudo-second order model showed the best fit to the experimental data. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. Mechanisms involving ion exchange and chemisorption might be responsible for the uptake of the anionic dyes on CS-CP. Obtained results imply that CS-CP could be applied as an effective adsorbent to remove anionic dyes from aqueous solutions.


2019 ◽  
Vol 800 ◽  
pp. 151-156
Author(s):  
Yamina Chergui ◽  
Abdelkader Iddou ◽  
Hafida Hentit ◽  
Abdallah Aziz ◽  
Jean Claude Jumas

The objective of this study was the synthesis of various activated carbons from grape marc issued from oenological by-product as a biosorbent. The biosolid was then applied to remove an industrial dye (red bemacid ETL) in aqueous solution. Activation of the synthesized charcoal was carried out using a solution of zinc chloride induced by two physical methods (microwaves and heating at 300°C). The obtained materials are characterized by FTIR and SEM methods. Results from batch adsorption tests have shown that pH solution, initial dye concentration and contact time affect the adsorption mechanism. Removal of the industrial dye revealed second order kinetics, exothermic adsorption and isothermal adsorption of BET type.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Tamirat Dula ◽  
Khalid Siraj ◽  
Shimeles Addisu Kitte

This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order kinetic model. Thermodynamic parameters showed that adsorption on the surface of BWAC was feasible, spontaneous in nature, and exothermic between temperatures of 298 and 318 K. The equilibrium data better fitted the Freundlich isotherm model for studying the adsorption behavior of Hexavalent Chromium by BWAC. IR spectrum for loaded and unloaded BWAC was obtained using FT-IR spectrophotometer. Adsorption efficiency and capacity of Hexavalent Chromium were found to be 98.28% at pH 2 and 59.23 mg/g at 300 K.


Sign in / Sign up

Export Citation Format

Share Document