Effect of Surfactant on the Formation of Chitosan/ε-Polycaprolactone Blend Films for Food Packaging Applications

Author(s):  
Ana Catarina Damasceno Gomes ◽  
Karoline Ferreira Silva ◽  
Anderson Junior Freitas ◽  
Kelvi Wilson Evaristo Miranda ◽  
Taline Amorim Santos ◽  
...  

Abstract The objective of this study was to develop and characterize chitosan-ε-polycaprolactone (CHI/PCL) polymer blends with Tween 80 as a compatibilizer for application in packaging. The blends were produced by casting, with up to 10% (w/w) PCL in the CHI matrix. These blends were characterized in terms of their microstructure, chemical interactions, mechanical and thermal properties, solubility and water vapor permeability (WVP). The micrographs showed microsphere-like structures from the PCL in the continuous phase of CHI. Fourier transform infrared spectroscopy (FTIR) indicated a high interaction between CHI amino groups and PCL carbonyls, resulting in blends with greater ductility than the pure CHI film, thus providing greater flexibility. In the crystallinity analyses, the presence of PCL favored an increase in crystalline regions, limiting the passage of light. Given the results, blends are an alternative for application in multilayer systems and can be considered for use as a biodegradable fraction in food packaging.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 927
Author(s):  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
Baomin Fan ◽  
Huijuan Zhang ◽  
...  

Hemicellulose is a kind of biopolymer with abundant resources and excellent biodegradability. Owing to its large number of polar hydroxyls, hemicellulose has a good barrier performance to nonpolar oxygen, making this biopolymer promising as food packaging material. Hydrophilic hydroxyls also make the polymer prone to water absorption, resulting in less satisfied strength especially under humid conditions. Thus, preparation of hemicellulose film with enhanced oxygen and water vapor barrier ability, as well as mechanical strength is still sought after. Herein, sodium trimetaphosphate (STMP) was used as esterification agent to form a crosslinked structure with hemicellulose through esterification reaction to render improved barrier performance by reducing the distance between molecular chains. The thus modified hemicellulose film achieved an oxygen permeability and water vapor permeability of 3.72 cm3 × μm × m−2 × d-1 × kPa−1 and 2.85 × 10−10 × g × m−1 × s−1 × Pa−1, respectively, at the lowest esterification agent addition of 10%. The crosslinked structure also brought good mechanical and thermal properties, with the tensile strength reaching 30 MPa, which is 118% higher than that of the hemicellulose film. Preliminary test of its application in apple preservation showed that the barrier film obtained can effectively slow down the oxidation and dehydration of apples, showing the prospect of application in the field of food packaging.


2016 ◽  
Vol 12 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Nooshin Noshirvani ◽  
Babak Ghanbarzadeh ◽  
Hadi Fasihi ◽  
Hadi Almasi

Abstract The goal of this work was to compare the barrier, mechanical, and thermal properties of two types of starch–polyvinyl alcohol (PVA) nanocomposites. Sodium montmorillonite (MMT) and nanocrystalline cellulose were chosen as nanoreinforcements. X-ray diffraction (XRD) test showed well-distributed MMT in the starch–PVA matrix, possibly implying that the clay nanolayers formed an exfoliated structure. The moisture sorption, solubility and water vapor permeability (WVP) studies revealed that the addition of MMT and nanocrystalline cellulose reduced the moisture affinity of starch–PVA biocomposite. At the level of 7 % MMT, the nanocomposite films showed the highest ultimate tensile strength (UTS) (4.93 MPa) and the lowest strain to break (SB) (57.65 %). The differential scanning calorimetry (DSC) results showed an improvement in thermal properties for the starch–PVA–MMT nanocomposites, but not for the starch–PVA–NCC nanocomposites. Results of this study demonstrated that the use of MMT in the fabrication of starch–PVA nanocomposites is more favorable than that of nanocrystalline cellulose to produce a desirable biodegradable film for food packaging applications.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 127 ◽  
Author(s):  
Laidson Gomes ◽  
Hiléia Souza ◽  
José Campiña ◽  
Cristina Andrade ◽  
António Silva ◽  
...  

Chitosan and chitosan-nanoparticles were combined to prepare biobased and unplasticized film blends displaying antimicrobial activity. Nanosized chitosans obtained by sonication for 5, 15, or 30 min were combined with chitosan at 3:7, 1:1, and 7:3 ratios, in order to adjust blend film mechanical properties and permeability. The incorporation of nanosized chitosans led to improvements in the interfacial interaction with chitosan microfibers, positively affecting film mechanical strength and stiffness, evidenced by scanning electron microscopy. Nanosized or blend chitosan film sensitivity to moisture was significantly decreased with the drop in biocomposite molecular masses, evidenced by increased water solubility and decreased water vapor permeability. Nanosized and chitosan interactions gave rise to light biobased films presenting discrete opacity and color changes, since red-green and yellow-blue colorations were affected. All chitosan blend films exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria. The performance of green unplasticized chitosan blend films displaying diverse morphologies has, thus, been proven as a potential step towards the design of nontoxic food packaging biobased films, protecting against spoilage microorganisms, while also minimizing environmental impacts.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 769
Author(s):  
Vlad Mihalca ◽  
Andreea Diana Kerezsi ◽  
Achim Weber ◽  
Carmen Gruber-Traub ◽  
Jürgen Schmucker ◽  
...  

Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3090
Author(s):  
Anita Ptiček Siročić ◽  
Ana Rešček ◽  
Zvonimir Katančić ◽  
Zlata Hrnjak-Murgić

The studied samples were prepared from polyethylene (PE) polymer which was coated with modified polycaprolactone (PCL) film in order to obtain bilayer films. Thin PCL film was modified with casein/aluminum oxide compound to enhance vapor permeability as well as mechanical and thermal properties of PE/PCL films. Casein/aluminum oxide modifiers were used in order to achieve some functional properties of polymer film that can be used in various applications, e.g., reduction of water vapor permeability (WVTR) and good mechanical and thermal properties. Significant improvement was observed in mechanical properties, especially in tensile strength as well as in water vapor values. Samples prepared with aluminum oxide particles indicated significantly lower values up to 60%, and samples that were prepared with casein and 5% Al2O3 showed the lowest WVTR value.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2569
Author(s):  
Mia Kurek ◽  
Nasreddine Benbettaieb ◽  
Mario Ščetar ◽  
Eliot Chaudy ◽  
Maja Repajić ◽  
...  

Chitosan and pectin films were enriched with blackcurrant pomace powder (10 and 20% (w/w)), as bio-based material, to minimize food production losses and to increase the functional properties of produced films aimed at food coatings and wrappers. Water vapor permeability of active films increased up to 25%, moisture content for 27% in pectin-based ones, but water solubility was not significantly modified. Mechanical properties (tensile strength, elongation at break and Young’s modulus) were mainly decreased due to the residual insoluble particles present in blackcurrant waste. FTIR analysis showed no significant changes between the film samples. The degradation temperatures, determined by DSC, were reduced by 18 °C for chitosan-based samples and of 32 °C lower for the pectin-based samples with blackcurrant powder, indicating a disturbance in polymer stability. The antioxidant activity of active films was increased up to 30-fold. Lightness and redness of dry films significantly changed depending on the polymer type. Significant color changes, especially in chitosan film formulations, were observed after exposure to different pH buffers. This effect is further explored in formulations that were used as color change indicators for intelligent biopackaging.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Yao Dou ◽  
Liguang Zhang ◽  
Buning Zhang ◽  
Ming He ◽  
Weimei Shi ◽  
...  

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 280
Author(s):  
Rui Lu ◽  
Dur E. Sameen ◽  
Wen Qin ◽  
Dingtao Wu ◽  
Jianwu Dai ◽  
...  

Selenium is a natural element which exists in the human body and plays an important role in metabolism. Along with this, selenium also possesses antibacterial and antioxidant properties. Using selenium microparticles (SeMPs) in food packaging films is exceptional. In this experiment, a solution casting method was used to make film. For this purpose, we used polylactic acid (PLA) as a substrate for the formation of a film membrane while SeMPs were added with certain ratios to attain antibacterial and antioxidant properties. The effects of SeMPs on the PLA film and the value of SeMPs in food packaging film production were investigated. The effects of the SeMPs contents on the features of the film, such as its mechanical property, solubility, swelling capacity, water vapor permeability, antioxidant activity, and the antibacterial activity of the composite membrane against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains, were studied. The results manifest that the PLA/SeMPs films showed higher water resistance, UV resistance, antioxidant activity, and antibacterial activity than pure PLA film. When the concentration of SeMPs was 1.5 wt%, the composite membrane showed the best comprehensive performance. Although the tensile strength and elongation at break of the membrane were slightly reduced by the addition of SeMPs, the results show that PLA/SeMPs films are still suitable for food packaging and would be a very promising material for food packaging.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 327 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Tiehu Li ◽  
Yingde Cui ◽  
Minghao Yi ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing graphene oxide (GO) (0.5, 1, 2, and 3 wt%) or graphene (0.5, 1, 2, and 3 wt%) were prepared using a solvent casting method. The scanning electron microscopy results indicated that the dispersion of GO throughout the film matrix was better than that of graphene. The successful formation of new hydrogen bonds between the film matrix and GO was confirmed through the use of Fourier-transform infrared spectroscopy. The tensile strength, elastic modulus, and initial degradation temperature of the films increased, whereas the total soluble mass, water vapor permeability, oxygen permeability, and light transmittance decreased following GO or graphene incorporation. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris-based blend films in the packaging field.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 618 ◽  
Author(s):  
Hynek Beneš ◽  
Jana Kredatusová ◽  
Jakub Peter ◽  
Sébastien Livi ◽  
Sonia Bujok ◽  
...  

Currently, highly demanded biodegradable or bio-sourced plastics exhibit inherent drawbacks due to their limited processability and end-use properties (barrier, mechanical, etc.). To overcome all of these shortcomings, the incorporation of lamellar inorganic particles, such as layered double hydroxides (LDH) seems to be appropriate. However, LDH delamination and homogenous dispersion in a polymer matrix without use of harmful solvents, remains a challenging issue, which explains why LDH-based polymer nanocomposites have not been scaled-up yet. In this work, LDH with intercalated ionic liquid (IL) anions were synthesized by a direct co-precipitation method in the presence of phosphonium IL and subsequently used as functional nanofillers for in-situ preparation of poly (butylene adipate-co-terephthalate) (PBAT) nanocomposites. The intercalated IL-anions promoted LDH swelling in monomers and LDH delamination during the course of in-situ polycondensation, which led to the production of PBAT/LDH nanocomposites with intercalated and exfoliated morphology containing well-dispersed LDH nanoplatelets. The prepared nanocomposite films showed improved water vapor permeability and mechanical properties and slightly increased crystallization degree and therefore can be considered excellent candidates for food packaging applications.


Sign in / Sign up

Export Citation Format

Share Document