scholarly journals The “Vitaminic-strategy” Against the Oral Bacteria S. Mutans and F. Nucleatum, Agents of Caries and Halitosis

Author(s):  
Laura Pietrangelo ◽  
Irene Magnifico ◽  
Giulio Petronio Petronio ◽  
Marco Alfio Cutuli ◽  
Noemi Venditti ◽  
...  

Abstract BackgroundThe oral cavity is one of the most complex human body environments. Indeed, the continuous variation of this habitat conditions reflects the high dynamism of the resident microbial community. Two key actors in the oral diseases are the bacteria Streptococcus mutans and Fusobacterium nucleatum, both implicated in the formation of oral biofilms and consequently in the generation of common pathologies such as caries and various gingival and soft tissue inflammation diseases. In addition, F. nucleatum is also implicated in the halitosis phenomenon, thanks to its demonstrated ability to produce as second metabolite the hydrogen sulphide (H2S), one of the volatile sulphur compounds (VSCs) that, with methyl mercaptan (CH3SH) and the dimethyl sulphide (CH3SCH3)24, is produced by periodontopathic anaerobic bacteria and causes the awkward bad breath in halitosis patients.MethodsIn this study, the oral preparation Vea® Oris constituted only by vitamin E and capric/caprylic acid was evaluated as a potential treatment of caries and periodontal diseases; the effect of the product at different concentrations on the growth and the ability of both strains to form biofilm was investigated. Regarding to F. nucleatum also the influence of Vea® Oris on the production of H2S was evaluated. ResultsOur in vitro results suggested that the Vea® Oris treatment could considerably reduce the growth and biofilm formation of both S. mutans and F. nucleatum. For F. nucleatum an appreciable reduction of the H2S production can be also obtained. ConclusionsOverall, this study highlighted the potential of Vea® Oris as a more “natural” adjuvant to prevent the biofilm and plaque formation and to reduce the smelly odour of halitosis.

Food Research ◽  
2019 ◽  
pp. 814-820 ◽  
Author(s):  
Yanti ◽  
S. Juniardi ◽  
B.W. Lay

Halitosis is caused by oral bacteria including Streptococcus sanguinis in mouth producing volatile sulphur compounds (VSCs), such as hydrogen sulfide, ethyl mercaptan, and methyl mercaptan which have pungent odor. Bacteria producing sulphur compounds produce oral biofilms as the accumulation of caries promotion. Caries is caused by the acid produced by oral bacteria that lead to tooth demineralization in low pH condition. Clove bud (Syzygium aromaticum), known as endogenous spice in Indonesia, has been traditionally used for centuries for treatment of periondal diseases. In this study, we extracted essential oil from Syzygium aromaticum (SAEO), identifed for its major essential oils by pyrolysis gas chromatograpy mass spectrometry (py-GC/MS), determined its antihalitosis efficacy on preventing and eradicating S. sanguinis oral biofilms, inhibiting VSCs and acid production in vitro. Chromatogram profile showed that SAEO contained major eugenol (22.10%) and aceteugenol (13.31%). For antibiofilm effect toward oral bacteria S. sanguinis, SAEO at 40 and 60 μg/mL effectively prevented biofilm formation up to 60% and removed the existed biofilms up to 50%. SAEO at 60 μg/mL also demonstrated a significant inhibition on VSCs production (up to 58%) and acid produced by S. sanguinis by increasing the terminal pH from 5.66 to 6.30. These data suggest that SAEO could be applied for a promising candidate for developing oral care functional products for management of halitosis.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1444
Author(s):  
Ilona Rowińska ◽  
Adrianna Szyperska-Ślaska ◽  
Piotr Zariczny ◽  
Robert Pasławski ◽  
Karol Kramkowski ◽  
...  

The article is a concise compendium of knowledge on the etiology of pathogenic microorganisms of all complexes causing oral diseases. The influence of particular components of the diet and the role of oxidative stress in periodontal diseases were described. The study investigated the bacteriostatic effect of the diet of adults in in vivo and in vitro tests on the formation of bacterial biofilms living in the subgingival plaque, causing diseases called periodontitis. If left untreated, periodontitis can damage the gums and alveolar bones. Anaerobic bacteria, called periopathogens or periodontopathogens, play a key role in the etiopathogenesis of periodontitis. The most important periopathogens of the oral microbiota are bacteria of all complexes, including the red complex. The obtained results suggest the possibility of using a specific diet in the prevention and treatment of periodontal diseases-already treated as a disease of civilization. The quoted article is an innovative compilation of knowledge on this subject and it can be a valuable source of knowledge for professional hygienists, dentists, peridontologists, dentistry students and anyone who cares about proper oral hygiene. The obtained results suggest the possibility of using this type of diet in the prophylaxis of the oral cavity in order to avoid periodontitis.


2020 ◽  
Vol 99 (13) ◽  
pp. 1411-1424 ◽  
Author(s):  
F.R.F. Teles ◽  
F. Alawi ◽  
R.M. Castilho ◽  
Y. Wang

Several epidemiological investigations have found associations between poor oral health and different types of cancer, including colorectal, lung, pancreatic, and oral malignancies. The oral health parameters underlying these relationships include deficient oral hygiene, gingival bleeding, and bone and tooth loss. These parameters are related to periodontal diseases, which are directly and indirectly mediated by oral bacteria. Given the increased accessibility of microbial sequencing platforms, many recent studies have investigated the link between the oral microbiome and these cancers. Overall, it seems that oral dysbiotic states can contribute to tumorigenesis in the oral cavity as well as in distant body sites. Further, it appears that certain oral bacterial species can contribute to carcinogenesis, in particular, Fusobacterium nucleatum and Porphyromonas gingivalis, based on results from epidemiological as well as mechanistic studies. Yet, the strength of the findings from these investigations is hampered by the heterogeneity of the methods used to measure oral diseases, the treatment of confounding factors, the study design, the platforms employed for microbial analysis, and types of samples analyzed. Despite these limitations, there is an overall indication that the presence of oral dysbiosis that leads to oral diseases may directly and/or indirectly contribute to carcinogenesis. Proper methodological standardized approaches should be implemented in future epidemiological studies as well as in the mechanistic investigations carried out to explore these results.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Thomas Cummins ◽  
Megan Hughes ◽  
Julian Marchesi ◽  
Daniel Morse

Candida albicans is an opportunistic fungal pathogen present in the oral cavities of up to two-thirds of people. Despite typically existing as a commensal microorganism, it has pathogenic potential, particularly in older, immunocompromised individuals. A common Candida-associated infection is denture-associated stomatitis (DS), which presents clinically as areas of erythema on the palatal mucosa, and discomfort for the denture-wearer. In vitro, previous work has shown that the expression of C. albicans virulence factors varies according to its interactions with other oral microorganisms. Mature single- and mixed-species biofilms (with Candida and several strains of common oral bacteria) were grown on poly(methyl methacrylate) (PMMA) coupons, representing dentures. Additionally, to some coupons, individual probiotic strains were added. Total RNA was extracted, reverse transcribed and putative virulence gene expression was determined by RT-qPCR relative to ACT1, a housekeeping gene. Biofilm-infection assays of FADU and TR146 epithelial cell lines were also performed by pre-culturing cells, then adding single- or mixed-species inocula overnight. Quantification of cell damage determined by lactate dehydrogenase assay. Biofilm co-culture with the addition of certain probiotic strains downregulated C. albicans virulence genes in both short-term and long-term mixed-species biofilms. With an increasing aged population that is heavily reliant on the use of antibiotics that can negatively affect the microbiota of patients, there is a requirement to look at the benefits of prophylactics, from both an economic and patient well-being viewpoint. The results show the realistic possibility of using probiotics to prevent or restrict development of Candida-associated oral diseases.


2019 ◽  
Vol 10 (2) ◽  
pp. 1019-1022
Author(s):  
Westeros Dominic Pereira ◽  
Geetha RV ◽  
Lakshmi Thangavelu

To study the anti-inflammatory effect of Punica granatum extract against the oral microbes. Oral diseases continue to be a major health problem worldwide. Dental caries and periodontal diseases are among the most important global oral health problems, although conditions such as oral and pharyngeal cancers and oral tissue lesions are also significant health concerns. Pomegranate extracts have been used for centuries in traditional medicine to confer health benefits in a number of inflammatory diseases, microbial infections and cancer. The anti-inflammatory activity of pomegranate extract was evaluated by protein denaturation assay, and the results were read spectrophotometrically. Denaturation of proteins is a great‐ documented cause of inflammation. As a part of the investigation on the mechanism of the anti-inflammatory activity, the ability to extract to inhibit protein denaturation was studied. It was effective in inhibiting heat induced albumin denaturation at different concentrations as shown in Table 1. Maximum inhibition, 70.12±1.12% was observed at500µg/ml. IC50 value was found to be 105.35±1.99µg/ml. Aspirin, a standard anti-inflammatory drug showed the maximum inhibition, 77.12±1.42% at the concentration of 200µg/ml. Hence it can be concluded that pomegranate extract has anti-inflammatory property and also can be used in products such as toothpaste and mouth wash etc.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Kívia Queiroz de Andrade ◽  
Cássio Luiz Coutinho Almeida-da-Silva ◽  
Robson Coutinho-Silva

Porphyromonas gingivalis(P. gingivalis) andFusobacterium nucleatum(F. nucleatum) are Gram-negative anaerobic bacteria possessing several virulence factors that make them potential pathogens associated with periodontal disease. Periodontal diseases are chronic inflammatory diseases of the oral cavity, including gingivitis and periodontitis. Periodontitis can lead to tooth loss and is considered one of the most prevalent diseases worldwide.P. gingivalisandF. nucleatumpossess virulence factors that allow them to survive in hostile environments by selectively modulating the host’s immune-inflammatory response, thereby creating major challenges to host cell survival. Studies have demonstrated that bacterial infection and the host immune responses are involved in the induction of periodontitis. The NLRP3 inflammasome and its effector molecules (IL-1βand caspase-1) play roles in the development of periodontitis. We and others have reported that the purinergic P2X7 receptor plays a role in the modulation of periodontal disease and intracellular pathogen control. Caspase-4/5 (in humans) and caspase-11 (in mice) are important effectors for combating bacterial pathogens via mediation of cell death and IL-1βrelease. The exact molecular events of the host’s response to these bacteria are not fully understood. Here, we review innate and adaptive immune responses induced byP. gingivalisandF. nucleatuminfections and discuss the possibility of manipulations of the immune response as therapeutic strategies. Given the global burden of periodontitis, it is important to develop therapeutic targets for the prophylaxis of periodontopathogen infections.


Author(s):  
EHAN ABDULHADI AL-SHARIFI ◽  
ASIA ABED AL-MAHMOOD ◽  
SUMAYAH AL-MAHMOOD

Objective: The aim is to estimate the effect of curcumin and rosemary as antibacterial agents among dental caries cases. Methods: Samples of saliva were randomly collected from 40 patients in Al-Furat General Hospital who attended the hospital from July to September 2018. Swabs were cultured on blood agar at 37°C for 24 h and then subcultured in mannitol salt agar and trypticase soy broth at 37°C for 24 h. Different concentrations of aqueous extract curcumin solution (0.1, 0.3, 0.5, and 1 mg/ml) and rosemary solution (1 g/ml) were prepared and added to the bacterial culture. Later, minimum inhibition zones of the bacterial cultures were determined. Results: The results showed that there were 25 cases of Streptococcus mutans, 10 cases of Staphylococcus aureus, 3 cases of anaerobic bacteria, and 2 cases of normal flora among 40 culturing swabs of bacteria. Aqueous extract of curcumin showed antibacterial effect with concentrations (0.1, 0.3, 0.5, and 1 mg/ml) against oral bacteria; nevertheless, these bacteria were resistant to the aqueous extract of rosemary with concentration 1 g/ml. Conclusion: It can be concluded that curcumin can be an effective antibacterial agent against dental caries disease and its effect increases positively in relation to its concentration. On the other hand, rosemary with 1 g/ml concentration did not show any effect on oral bacteria.


2000 ◽  
Vol 68 (6) ◽  
pp. 3140-3146 ◽  
Author(s):  
Yiping W. Han ◽  
Wenyuan Shi ◽  
George T.-J. Huang ◽  
Susan Kinder Haake ◽  
No-Hee Park ◽  
...  

ABSTRACT Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, includingBacteroides forsythus, Campylobacter curvus,Eikenella corrodens, Fusobacterium nucleatum,Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability to adhere to and invade primary cultures of human gingival epithelial cells (HGEC). The effects of these bacteria on the production of interleukin-8 (IL-8), a proinflammatory chemokine, were also measured. These studies provided an initial demonstration that F. nucleatum adhered to and invaded HGEC and that this was accompanied by high levels of IL-8 secretion from the epithelial cells. The attachment and invasion characteristics of F. nucleatumwere also tested using KB cells, an oral epithelial cell line. The invasion was verified by transmission electron microscopy and with metabolic inhibitors. Invasion appeared to occur via a “zipping” mechanism and required the involvement of actins, microtubules, signal transduction, protein synthesis, and energy metabolism of the epithelial cell, as well as protein synthesis by F. nucleatum. A spontaneous mutant, lam, of F. nucleatum, isolated as defective in autoagglutination, was unable to attach to or invade HGEC or KB cells, further indicating the requirement of bacterial components in these processes. Sugar inhibition assays indicated that lectin-like interactions were involved in the attachment of F. nucleatum to KB cells. Investigation of these new virulence phenotypes should improve our understanding of the role of F. nucleatum in periodontal infections.


1998 ◽  
Vol 66 (10) ◽  
pp. 4729-4732 ◽  
Author(s):  
David J. Bradshaw ◽  
Philip D. Marsh ◽  
G. Keith Watson ◽  
Clive Allison

ABSTRACT Coaggregation is a well-characterized phenomenon by which specific pairs of oral bacteria interact physically. The aim of this study was to examine the patterns of coaggregation between obligately anaerobic and oxygen-tolerant species that coexist in a model oral microbial community. Obligate anaerobes other than Fusobacterium nucleatum coaggregated only poorly with oxygen-tolerant species. In contrast, F. nucleatum was able to coaggregate not only with both oxygen-tolerant and other obligately anaerobic species but also with otherwise-noncoaggregating obligate anaerobe–oxygen-tolerant species pairs. The effects of the presence or absence of F. nucleatum on anaerobe survival in both the biofilm and planktonic phases of a complex community of oral bacteria grown in an aerated (gas phase, 200 ml of 5% CO2 in air · min−1) chemostat system were then investigated. In the presence of F. nucleatum, anaerobes persisted in high numbers (>107 · ml−1 in the planktonic phase and >107 · cm−2 in 4-day biofilms). In an equivalent culture in the absence of F. nucleatum, the numbers of black-pigmented anaerobes (Porphyromonas gingivalis and Prevotella nigrescens) were significantly reduced (P ≤ 0.001) in both the planktonic phase and in 4-day biofilms, while the numbers of facultatively anaerobic bacteria increased in these communities. Coaggregation-mediated interactions between F. nucleatum and other species facilitated the survival of obligate anaerobes in aerated environments.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 246 ◽  
Author(s):  
María C. Sánchez ◽  
Honorato Ribeiro-Vidal ◽  
Begoña Bartolomé ◽  
Elena Figuero ◽  
M. Victoria Moreno-Arribas ◽  
...  

The worrying rise in antibiotic resistances emphasizes the need to seek new approaches for treating and preventing periodontal diseases. The purpose of this study was to evaluate the antibacterial and anti-biofilm activity of cranberry in a validated in vitro biofilm model. After chemical characterization of a selected phenolic-rich cranberry extract, its values for minimum inhibitory concentration and minimum bactericidal concentration were calculated for the six bacteria forming the biofilm (Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans). Antibacterial activity of the cranberry extract in the formed biofilm was evaluated by assessing the reduction in bacteria viability, using quantitative polymerase chain reaction (qPCR) combined with propidium monoazide (PMA), and by confocal laser scanning microscopy (CLSM), and anti-biofilm activity by studying the inhibition of the incorporation of different bacteria species in biofilms formed in the presence of the cranberry extract, using qPCR and CLSM. In planktonic state, bacteria viability was significantly reduced by cranberry (p < 0.05). When growing in biofilms, a significant effect was observed against initial and early colonizers (S. oralis (p ≤ 0.017), A. naeslundii (p = 0.006) and V. parvula (p = 0.010)) after 30 or 60 s of exposure, while no significant effects were detected against periodontal pathogens (F. nucleatum, P. gingivalis or A. actinomycetemcomitans (p > 0.05)). Conversely, cranberry significantly (p < 0.001 in all cases) interfered with the incorporation of five of the six bacteria species during the development of 6 h-biofilms, including P. gingivalis, A. actinomycetemcomitans, and F. nucleatum. It was concluded that cranberry had a moderate antibacterial effect against periodontal pathogens in biofilms, but relevant anti-biofilm properties, by affecting bacteria adhesion in the first 6 h of development of biofilms.


Sign in / Sign up

Export Citation Format

Share Document