scholarly journals Unraveling the Therapeutic Potential of GANT61/Dactolisib Combination as a Novel Prostate Cancer Modality

Author(s):  
Mohamed youssef ◽  
Nermine Moussa ◽  
Maged W. Helmy ◽  
Medhat Haroun

Abstract Aberrant activation of several signaling pathways has been implicated in prostate cancer (PCa) progression to castrate-resistant prostate cancer (CRPC). Phosphoinositide-3-kinase/Protein Kinase B/mechanistic Target of Rapamycin (PI3K/AKT/mTOR) and Hedgehog/GLI (Hh/GLI) pathways are major participants in progression to CRPC. In this sense, the current work aims to assess the potential antitumor effects resulting from co-targeting the aforementioned pathways in PC3 cells with Dactolisib as a dual PI3K/mTOR inhibitor and GANT61 as a GLI1 antagonist. Three replica of PC3 cells were assigned for four treatment groups; vehicle control, Dactolisib-treated, GANT61-treated, and combination-treated groups. GLI1 gene expression was determined by quantitative real-time PCR while active caspase-3 was determined colorimetrically. P-AKT, p70 ribosomal s6 protein kinase 1 (pS6K1), cyclin D1, vascular endothelial growth factor 1 (VEGF1), and Microtubule-associated proteins 1A/1B light chain 3 (LC3) protein levels were determined by ELISA technique. GLI1 gene expression was down-regulated as a result of Dactolisib, GANT61, and their combination. Additionally, both drugs significantly reduced p-AKT, pS6K1, cyclin D1, and VEGF1 protein levels. Dactolisib elevated LC3 protein levels and GANT61 augmented Dactolisib effect on LC3. Moreover, only Dactolisib/GANT61combination significantly increased active caspase-3 level. To sum up, Dactolisib/GANT61 combination was shown to be promising in PCa treatment. Further in-vitro and in-vivo studies are warranted to support our findings.

2021 ◽  
Author(s):  
Nermine Aly Moussa ◽  
Mahira Mohamed ◽  
Medhat Haroun ◽  
Maged Helmy Wasfy

Abstract Despite the tremendous efforts to implement new paradigms for breast cancer, the disease still remains a major challenge worldwide. Genetic deregulation is evident in all breast cancer subtypes and comprises a multitude of mutated genes and deregulated signaling cascades. In this sense, co-targeting Src and COX-2 signaling cascades have attracted fervent interest. This work explored the probable anti-carcinogenic effects of Dasatinib as a Src inhibitor, Celecoxib as a selective COX-2 inhibitor, and their combination in MDA-MB-231 triple-negative breast cancer cell line. Drug growth inhibition 50 (GI50) was determined using the MTT assay and the obtained results were analyzed using CompuSyn 3.0.1 software. MDA-MB-231 cells were divided into four treatment groups including a positive control, Dasatinib-treated, Celecoxib-treated, and combination-treated groups. Standard sandwich ELISA was used for the determination of the protein levels of c-Src, Bcl-2, p-AKT, FAK, PGE2, VEGF, and cyclin D1. Active caspase-3 was determined colorimetrically and the expression of COX-2 and c-Src genes was quantitatively determined via quantitative real-time polymerase chain reaction. The GI50 for Dasatinib was 0.05699 µM while that for Celecoxib was 69.0976 µM. Dasatinib up-regulated c-Src gene while Celecoxib and Dasatinib/Celecoxib combination down-regulated such expression level. COX-2 gene was down-regulated by Celecoxib while it was up-regulated by both Dasatinib and Dasatinib/Celecoxib combination. On one hand, Dasatinib, Celecoxib, and their combination significantly reduced the protein levels of c-Src, Bcl-2, p-AKT, FAK, PGE2, VEGF, and cyclin D1. On the other hand, they elevated active caspase-3. To sum up, Dasatinib/Celecoxib combination increased the capability for apoptosis and suppressed proliferation, angiogenesis, migration, and invasion suggesting a strong cross-talk between Src signaling cascade and COX-2/PGE2 via the intermediate PI3K/AKT/mTOR pathway. Further in-vitro and in-vivo studies are warranted to verify the present findings.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 123-129 ◽  
Author(s):  
E Sariban ◽  
K Imamura ◽  
M Sherman ◽  
V Rothwell ◽  
P Pantazis ◽  
...  

Abstract The colony-stimulating factor-1 (CSF-1) regulates survival, growth, and differentiation of monocytes by binding to a single class of high- affinity receptors. The CSF-1 receptor is identical to the product of the c-fms protooncogene. The present studies monitored the effects of TPA and CSF-1 on c-fms gene expression in human monocytes. The results demonstrate that TPA downmodulates the constitutive expression of c-fms mRNA to low but detectable levels. Treatment of human monocytes with TPA was similarly associated with decreases in levels of the 138- and 125-Kd c-fms-encoded proteins. However, the kinetics of c-fms protein downmodulation indicated independent effects of TPA on c-fms expression at the RNA and protein levels. Furthermore, c-fms protein levels subsequently recovered despite persistently low levels of c-fms mRNA. Although previous studies demonstrated that c-fms protein is down- regulated in the presence of CSF-1, the present results indicate that CSF-1 also downregulates levels of c-fms mRNA. Moreover, the results indicate that CSF-1 increases protein kinase C activity in the membrane fraction. Together, these findings suggest that c-fms gene expression is differentially regulated at both the RNA and protein levels after activation of protein kinase C in human monocytes treated with TPA and CSF-1.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zongliang Lu ◽  
Wei Song ◽  
Yaowen Zhang ◽  
Changpeng Wu ◽  
Mingxing Zhu ◽  
...  

Castration-resistant (androgen-independent) and PTEN-deficient prostate cancer is a challenge in clinical practice. Sorafenib has been recommended for the treatment of this type of cancer, but is associated with several adverse effects. Platycodin D (PD) is a triterpene saponin with demonstrated anti-cancer effects and a good safety profile. Previous studies have indicated that PC3 cells (PTEN -/-, AR -/-) are sensitive to PD, suggesting that it may also be a useful treatment for castration-resistance prostate cancer. We herein investigated the effects of combining PD with sorafenib to treat PTEN-deficient prostate cancer cells. Our data show that PD promotes sorafenib-induced apoptosis and cell cycle arrest in PC3 cells. Of interest, PD only promoted the anti-cancer effects of sorafenib in Akt-positive and PTEN-negative prostate cancer cells. Mechanistic studies revealed that PD promoted p-Akt ubiquitination by increasing the p-Akt level. PD also increased the protein and mRNA expression of FOXO3a, the downstream target of Akt. Meanwhile, PD promoted the activity of FOXO3a and increased the protein expression of Fasl, Bim and TRAIL. Interestingly, when FOXO3a expression was inhibited, the antitumor effects of both PD and sorafenib were individually inhibited, and the more potent effects of the combination treatment were inhibited. Thus, the combination of PD and sorafenib may exert potent anti-cancer effects specifically via FOXO3a. The use of Akt inhibitors or FOXO3a agonists, such as PD, may represent a promising approach for the treatment of androgen-independent and PTEN-deficient prostate cancer.


1999 ◽  
Vol 81 (03) ◽  
pp. 415-422 ◽  
Author(s):  
Sophie Lopez ◽  
Franck Peiretti ◽  
Pierre Morange ◽  
Amale Laouar ◽  
Chantal Fossat ◽  
...  

SummaryHL-60 cells treated by PMA develop the monocyte adherent pheno-type and synthesize plasminogen activator inhibitor type-1 (PAI-1). We focused our study on the identification of the PMA-activated protein kinase C (PKC) isoform and its downstream transduction pathway activating PAI-1 synthesis. Acquisition of the monocytic phenotype was evidenced by cell adherence (90-95%) and a sharp increase of CD 36 and receptor for urokinase plasminogen activator (uPAR) surface expression. Ro 31-8220, a specific inhibitor of PKC, prevented PMA-induced PAI-1 synthesis (mRNA and protein levels) and cell adhesion. To identify the PKC isoform, we took advantage of the HL-525 cell line, an HL-60 cell variant deficient in PKCβ gene expression. This defect prevents PMA to induce the differentiation process. HL-525 stimulated by PMA did not synthesize PAI-1 nor become adherent. However, in HL-525 cells either pretreated by retinoic acid that reinduces PKCβ gene expression or transfected with PKCβ cDNA, PMA significantly activated PAI-1 synthesis and adhesion of cells. Immunoblotting of active Mitogen Activated Protein Kinase (MAPK) p42/p44 in HL-60 cells showed a preferential and sustained activation of the p42 isoform by PMA over the p44 isoform. Ro 31-8220 significantly attenuated this activation. PD 098059 and U0126, both highly specific MEK inhibitors, efficiently prevented PMA-induced PAI-1 synthesis (mRNA and protein levels) and cell adhesion whereas SB203580, a specific inhibitor of stress-activated MAPK p38, did not. Results obtained from HL-60 and HL-525 cells indicate that the PMA-activated transduction pathway of uPAR expression involves a PKC isoform other than PKCβ.In conclusion, we propose that the pathway PKCβ-MEK-MAPK p42 is a potential linear route for PAI-1 synthesis leading to morphological changes and adherence linked to PMA-induced differentiation in HL-60 cells.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1478 ◽  
Author(s):  
Gianluca Vadalà ◽  
Giuseppina Di Giacomo ◽  
Luca Ambrosio ◽  
Francesca Cannata ◽  
Claudia Cicione ◽  
...  

Physical exercise favors weight loss and ameliorates articular pain and function in patients suffering from osteoarthritis. Irisin, a myokine released upon muscle contraction, has demonstrated to yield anabolic effects on different cell types. This study aimed to investigate the effect of irisin on human osteoarthritic chondrocytes (hOAC) in vitro. Our hypothesis was that irisin would improve hOAC metabolism and proliferation. Cells were cultured in growing media and then exposed to either phosphate-buffered saline (control group) or human recombinant irisin (experimental group). Cell proliferation, glycosaminoglycan content, type II/X collagen gene expression and protein quantification as well as p38/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK), protein kinase B (Akt), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) involvement were evaluated. Furthermore, gene expression of interleukin (IL)-1 and -6, matrix metalloproteinase (MMP)-1 and -13, inducible nitric oxide synthase (iNOS), and tissue inhibitor of matrix metalloproteinases (TIMP)-1 and -3 were investigated following irisin exposure. Irisin increased hOAC cell content and both type II collagen gene expression and protein levels, while decreased type X collagen gene expression and protein levels. Moreover, irisin decreased IL-1, IL-6, MMP-1, MMP-13 and iNOS gene expression, while increased TIMP-1 and TIMP-3 levels. These effects seemed to be mediated by inhibition of p38, Akt, JNK and NFκB signaling pathways. The present study suggested that irisin may stimulate hOAC proliferation and anabolism inhibiting catabolism through p38, Akt, JNK, and NFκB inactivation in vitro, demonstrating the existence of a cross-talk between muscle and cartilage.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3631
Author(s):  
Ketaki Gadkari ◽  
Urvi Kolhatkar ◽  
Rutu Hemani ◽  
Gisella Campanelli ◽  
Qing Cai ◽  
...  

Natural stilbenes have gained significant attention in the scientific community owing to their potential anticancer effects against prostate cancer. We recently reported that Gnetin C, a resveratrol (Res) dimer, demonstrated more potent inhibition of metastasis-associated protein 1/v-ets avian erythroblastosis virus E26 oncogene homolog 2 (MTA1/ETS2) axis in prostate cancer cell lines than other stilbenes. In this study, we investigated in vivo antitumor effects of Gnetin C in two doses (50 and 25 mg/kg, i.p.) using PC3M-Luc subcutaneous xenografts and compared these to Res and pterostilbene (Pter). We found that while vehicle-treated mice revealed rapid tumor progression, compounds-treated mice showed noticeable delay in tumor growth. Gnetin C in 50 mg/kg dose demonstrated the most potent tumor inhibitory effects. Gnetin C in 25 mg/kg dose exhibited tumor inhibitory effects comparable with Pter in 50 mg/kg dose. Consistent with the effective antitumor effects, Gnetin C-treated tumors showed reduced mitotic activity and angiogenesis and a significant increase in apoptosis compared to all the other groups. The data suggest that Gnetin C is more potent in slowing tumor progression in prostate cancer xenografts than Res or Pter. Taken together, we demonstrated, for the first time, that Gnetin C is a lead compound among stilbenes for effectively blocking prostate cancer progression in vivo.


2008 ◽  
Vol 28 (6) ◽  
pp. 319-326 ◽  
Author(s):  
Ahmed Yaqinuddin ◽  
Farhat Abbas ◽  
Syed Z. Naqvi ◽  
Mohammad U. Bashir ◽  
Romena Qazi ◽  
...  

Alterations in genomic CpG methylation patterns have been found to be associated with cell transformation and neoplasia. Although it is recognized that methylation of CpG residues negatively regulates gene expression, how the various MBPs (methyl-binding proteins) contribute to this process remains elusive. To determine whether the two well characterized proteins MeCP2 (methyl-CpG-binding protein 2) and MBD1 (methyl-CpG-binding domain 1) have distinct or redundant functions, we employed RNAi (RNA interference) to silence their expression in the prostate cancer-derived PC3 cell line, and subsequently compared cell growth, invasion and migration properties of these cell lines in addition to their respective mRNA-expression profiles. Cells devoid of MeCP2 proliferated more poorly compared with MBD1-deficient cells and the parental PC3 cells. Enhanced apoptosis was observed in MeCP2-deficient cells, whereas apoptosis in parental and MBD1-deficient cells appeared to be equivalent. Boyden chamber invasion and wound-healing migration assays showed that MBD1-silenced cells were both more invasive and migratory compared with MeCP2-silenced cells. Finally, gene chip microarray analyses showed striking differences in the mRNA-expression profiles obtained from MeCP2- and MBD1-depleted cells relative to each other as well as when compared with control cells. The results of the present study suggest that MeCP2 and MBD1 silencing appear to affect cellular processes independently in vivo and that discrete sets of genes involved in cellular proliferation, apoptosis, invasion and migration are targeted by each protein.


Endocrinology ◽  
2013 ◽  
Vol 154 (5) ◽  
pp. 1768-1779 ◽  
Author(s):  
BaoHan T. Vo ◽  
Derrick Morton ◽  
Shravan Komaragiri ◽  
Ana C. Millena ◽  
Chelesie Leath ◽  
...  

Abstract TGF-β plays an important role in the progression of prostate cancer. It exhibits both tumor suppressor and tumor-promoting activities. Correlations between cyclooxygenase (COX)-2 overexpression and enhanced production of prostaglandin (PG)E2 have been implicated in cancer progression; however, there are no studies indicating that TGF-β effects in prostate cancer cells involve PGE2 synthesis. In this study, we investigated TGF-β regulation of COX-1 and COX-2 expression in prostate cancer cells and whether the effects of TGF-β on cell proliferation and migration are mediated by PGE2. COX-1 protein was ubiquitously expressed in prostate cells; however, COX-2 protein levels were detected only in prostate cancer cells. TGF-β treatment increased COX-2 protein levels and PGE2 secretion in PC3 cells. Exogenous PGE2 and PGF2α had no effects on cell proliferation in LNCaP, DU145, and PC3 cells whereas PGE2 and TGF-β induced migration and invasive behavior in PC3 cells. Only EP2 and EP4 receptors were detected at mRNA levels in prostate cells. The EP4-targeting small interfering RNA inhibited PGE2 and TGF-β-induced migration of PC3 cells. TGF-β and PGE2 induce activation of PI3K/AKT/mammalian target of rapamycin pathway as indicated by increased AKT, p70S6K, and S6 phosphorylation. Rapamycin completely blocked the effects of TGF-β and PGE2 on phosphorylation of p70S6K and S6 but not on AKT phosphorylation. PGE2 and TGF-β induced phosphorylation of AKT, which was blocked by antagonists of PGE2 (EP4) receptors (L161982, AH23848) and PI3K inhibitor (LY294002) in PC3 cells. Pretreatment with L161982 or AH23848 blocked the stimulatory effects of PGE2 and TGF-β on cell migration, whereas LY294002 or rapamycin completely eliminated PGE2, TGF-β, and epidermal growth factor-induced migration in PC3 cells. We conclude that TGF-β increases COX-2 levels and PGE2 secretion in prostate cancer cells which, in turn, mediate TGF-β effects on cell migration and invasion through the activation of PI3K/AKT/mammalian target of rapamycin pathway.


Sign in / Sign up

Export Citation Format

Share Document