scholarly journals Identification of Candidate Genes Associated with Steroid-Induced Osteonecrosis of The Femoral Head by Bioinformatics Based on GEO Database

2020 ◽  
Author(s):  
Shile Cheng ◽  
Zhigang Nie ◽  
Hao Peng

Abstract BACKGROUNDː Steroid-induced osteonecrosis of the femoral head (SONFH) is a progressive bone disorder and its characterized by femoral head collapse and hip joint dysfunction and the biomarkers of SONFH remain unclear. The purposes of this study are to identify the significant biological function and pathway involved in SONFH, and further to search the underlying mechanism of this pathway in SONFH. METHODSː The GSE123568 dataset obtained from the Gene Expression Omnibus (GEO) database and normalized using Robust Multiarray Averaging (RMA) methods. And the Gene set enrichment analysis (GSEA), Ingenuity pathway analysis (IPA), VarElect online tool, MalaCards database, miRWalk online tool, DIANA too, and Cytoscape were integrated for bioinformatics analyses.RESULTSː 6 biological processes and 4 KEGG pathways were enriched by GSEA, and 68 candidate genes were involved in these pathways. Besides, the canonical pathway and molecule function analysis by IPA, the results revealed that 10 canonical pathways and 12 candidate genes were identified, and 20 modules and 101 candidate genes were enriched by molecule function analysis. The above candidate genes were combined and filtered using the VarElect online tool. The filtered candidate genes were overlapped with another cluster of candidate genes from the MalaCards database to identify hub genes ACP5, TNF, MMP8. Based on the hub genes, the miRNAs were screened and overlapped to predict the lncRNAs. Total 7 miRNAs of ACP5, TNF, MMP8 were targeted 956 candidate lncRNAs.CONCLUSIONSː In summary, this study identified the hub candidate genes and pathways associated with SONFH progress, and constructed the ceRNA network based on the hub candidate genes. Our findings might provide the potential biomarkers of SONFH diagnosis and treatment.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Shen ◽  
Li-rong Xu ◽  
Xiao Tang ◽  
Chang-po Lin ◽  
Dong Yan ◽  
...  

Abstract Background Atherosclerosis is a chronic inflammatory disease that affects multiple arteries. Numerous studies have shown the inherent immune diversity in atheromatous plaques and suggest that the dysfunction of different immune cells plays an important role in atherosclerosis. However, few comprehensive bioinformatics analyses have investigated the potential coordinators that might orchestrate different immune cells to exacerbate atherosclerosis. Methods Immune infiltration of 69 atheromatous plaques from different arterial beds in GSE100927 were explored by single-sample-gene-set enrichment analysis (presented as ssGSEA scores), ESTIMATE algorithm (presented as immune scores) and CIBERSORT algorithm (presented as relative fractions of 22 types of immune cells) to divide these plaques into ImmuneScoreL cluster (of low immune infiltration) and ImmuneScoreH cluster (of high immune infiltration). Subsequently, comprehensive bioinformatics analyses including differentially-expressed-genes (DEGs) analysis, protein–protein interaction networks analysis, hub genes analysis, Gene-Ontology-terms and KEGG pathway enrichment analysis, gene set enrichment analysis, analysis of expression profiles of immune-related genes, correlation analysis between DEGs and hub genes and immune cells were conducted. GSE28829 was analysed to cross-validate the results in GSE100927. Results Immune-related pathways, including interferon-related pathways and PD-1 signalling, were highly enriched in the ImmuneScoreH cluster. HLA-related (except for HLA-DRB6) and immune checkpoint genes (IDO1, PDCD-1, CD274(PD-L1), CD47), RORC, IFNGR1, STAT1 and JAK2 were upregulated in the ImmuneScoreH cluster, whereas FTO, CRY1, RORB, and PER1 were downregulated. Atheromatous plaques in the ImmuneScoreH cluster had higher proportions of M0 macrophages and gamma delta T cells but lower proportions of plasma cells and monocytes (p < 0.05). CAPG, CECR1, IL18, IGSF6, FBP1, HLA-DPA1 and MMP7 were commonly related to these immune cells. In addition, the advanced-stage carotid plaques in GSE28829 exhibited higher immune infiltration than early-stage carotid plaques. Conclusions Atheromatous plaques with higher immune scores were likely at a more clinically advanced stage. The progression of atherosclerosis might be related to CAPG, IGSF6, IL18, CECR1, FBP1, MMP7, FTO, CRY1, RORB, RORC, PER1, HLA-DPA1 and immune-related pathways (IFN-γ pathway and PD-1 signalling pathway). These genes and pathways might play important roles in regulating immune cells such as M0 macrophages, gamma delta T cells, plasma cells and monocytes and might serve as potential therapeutic targets for atherosclerosis.


2021 ◽  
Author(s):  
Chao Zhang ◽  
Feng Xu ◽  
Fang Fang

Abstract Background: Sepsis-associated acute lung injury (ALI) is a potentially lethal complication associated with a poor prognosis and high mortality worldwide, especially in the outbreak of COVID-19. However, the fundamental mechanisms of this complication were still not fully elucidated. Thus, we conducted this study to identify hub genes and biological pathways of sepsis-associated ALI, mainly focus on two pathways of LPS and HMGB1. Methods: Gene expression profile GSE3037 were downloaded from Gene Expression Omnibus (GEO) database, including 8 patients with sepsis-induced acute lung injury, with 8 unstimulated blood neutrophils, 8 LPS- induced neutrophils and 8 HMGB1-induced neutrophils. Differentially expressed genes (DEGs) identifications, Gene Ontology (GO) function analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, Gene Set Enrichment Analysis (GSEA) and protein-protein interaction (PPI) network constructions were performed to obtain hub genes and relevant biological pathways.Results: We identified 534 and 317 DEGs for LPS- and HMGB1-induced ALI, respectively. The biological pathways involved in LPS- and HMGB1-induced ALI were also identified accordingly. By PPI network analysis, we found that ten hub genes for LPS-induced ALI (CXCL8, TNF, IL6, IL1B, ICAM1, CXCL1, CXCL2, IL1A, IL1RN and CXCL3) and another ten hub genes for HMGB1-induced ALI (CCL20, CXCL2, CXCL1, CCL4, CXCL3, CXCL9, CCL21, CXCR6, KNG1 and SST). Furthermore, by combining analysis, the results revealed that genes of TNF, CCL20, IL1B, NFKBIA, CCL4, PTGS2, TNFAIP3, CXCL2, CXCL1 and CXCL3 were potential biomarkers for sepsis-associated ALI. Conclusions: Our study revealed that ten hub genes associated with sepsis-induced ALI were TNF, CCL20, IL1B, NFKBIA, CCL4, PTGS2, TNFAIP3, CXCL2, CXCL1 and CXCL3, which may serve as genetic biomarkers and be further verified in prospective experimental trials.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yanzhe Wang ◽  
Wenjuan Cai ◽  
Liya Gu ◽  
Xuefeng Ji ◽  
Qiusheng Shen

Purpose. Atrial fibrillation (AF) is the most frequent arrhythmia in clinical practice. The pathogenesis of AF is not yet clear. Therefore, exploring the molecular information of AF displays much importance for AF therapy. Methods. The GSE2240 data were acquired from the Gene Expression Omnibus (GEO) database. The R limma software package was used to screen DEGs. Based on the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) databases, we conducted the functions and pathway enrichment analyses. Then, the STRING and Cytoscape software were employed to build Protein-Protein Interaction (PPI) network and screen for hub genes. Finally, we used the Cell Counting Kit-8 (CCK-8) experiment to explore the effect of hub gene knockdown on the proliferation of AF cells. Result. 906 differentially expressed genes (DEGs), including 542 significantly upregulated genes and 364 significantly downregulated genes, were screened in AF. The genes of AF were mainly enriched in vascular endothelial growth factor-activated receptor activity, alanine, regulation of histone deacetylase activity, and HCM. The PPI network constructed of significantly upregulated DEGs contained 404 nodes and 514 edges. Five hub genes, ASPM, DTL, STAT3, ANLN, and CDCA5, were identified through the PPI network. The PPI network constructed by significantly downregulated genes contained 327 nodes and 301 edges. Four hub genes, CDC42, CREB1, AR, and SP1, were identified through this PPI network. The results of CCK-8 experiments proved that knocking down the expression of CDCA5 gene could inhibit the proliferation of H9C2 cells. Conclusion. Bioinformatics analyses revealed the hub genes and key pathways of AF. These genes and pathways provide information for studying the pathogenesis, treatment, and prognosis of AF and have the potential to become biomarkers in AF treatment.


2020 ◽  
Author(s):  
Ming Chen ◽  
Junkai Zeng ◽  
Yeqing Yang ◽  
Buling Wu

Abstract Background Pulpitis is known as an inflammatory disease classified by the level of inflammation. The existed traditional methods of evaluating status of dental pulp tissue in clinical practice still have some shortages and limitations. Immediate and accurate diagnosis of pulpitis is essential to the choice of treatment. Through integrating different datasets from Gene Expression Omnibus (GEO) database, we analyzed the merged expression matrix of pulpitis, aiming to identified biological pathways and diagnostic biomarker of pulpitis.Methods By integrating two datasets (GSE77459 and GSE92681) in GEO database using sva and limma packages, differentially expressed genes (DEGs) of pulpitis were identified. Then DEGs were used to analyze biological pathways of dental pulp inflammation with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and the Gene Set Enrichment Analysis (GSEA). Protein–protein interaction (PPI) networks and modules were constructed to identify hub genes with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape.Results A total of 472 DEGs consisting of 396 upregulated and 76 downregulated genes were found in pulpitis tissue. DEGs in GO analysis were enriched in biological processes about inflammation and in KEGG pathway analysis were cytokine-cytokine receptor interaction, chemokine signaling pathway and NF-κB signaling pathway. GSEA results provided further functional annotations including complement system, IL6/JAK/STAT3 signaling pathway and inflammatory response pathways. According to the degrees of nodes in PPI network, 10 hub genes were obtained and 8 diagnostic biomarker candidates were screened, including PTPRC, CD86, CCL2, IL6, TLR8, MMP9, CXCL8 and ICAM1.


Author(s):  
Weiqiang Huang ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xixi Wu ◽  
Xiaoqing Wang ◽  
...  

Abstract Background Irradiation has emerged as a valid tool for nasopharyngeal carcinoma (NPC) in situ treatment; however, NPC derived from tissues treated with irradiation is a main cause cancer-related death. The purpose of this study is to uncover the underlying mechanism regarding tumor growth after irradiation and provided potential therapeutic strategy. Methods Fibroblasts were extracted from fresh NPC tissue and normal nasopharyngeal mucosa. Immunohistochemistry was conducted to measure the expression of α-SMA and FAP. Cytokines were detected by protein array chip and identified by real-time PCR. CCK-8 assay was used to detect cell proliferation. Radiation-resistant (IRR) 5-8F cell line was established and colony assay was performed to evaluate tumor cell growth after irradiation. Signaling pathways were acquired via gene set enrichment analysis (GSEA). Comet assay and γ-H2AX foci assay were used to measure DNA damage level. Protein expression was detected by western blot assay. In vivo experiment was performed subcutaneously. Results We found that radiation-resistant NPC tissues were constantly infiltrated with a greater number of cancer-associated fibroblasts (CAFs) compared to radiosensitive NPC tissues. Further research revealed that CAFs induced the formation of radioresistance and promoted NPC cell survival following irradiation via the IL-8/NF-κB pathway to reduce irradiation-induced DNA damage. Treatment with Tranilast, a CAF inhibitor, restricted the survival of CAF-induced NPC cells and attenuated the of radioresistance properties. Conclusions Together, these data demonstrate that CAFs can promote the survival of irradiated NPC cells via the NF-κB pathway and induce radioresistance that can be interrupted by Tranilast, suggesting the potential value of Tranilast in sensitizing NPC cells to irradiation.


2021 ◽  
Vol 22 (12) ◽  
pp. 6505
Author(s):  
Jishizhan Chen ◽  
Jia Hua ◽  
Wenhui Song

Applying mesenchymal stem cells (MSCs), together with the distraction osteogenesis (DO) process, displayed enhanced bone quality and shorter treatment periods. The DO guides the differentiation of MSCs by providing mechanical clues. However, the underlying key genes and pathways are largely unknown. The aim of this study was to screen and identify hub genes involved in distraction-induced osteogenesis of MSCs and potential molecular mechanisms. Material and Methods: The datasets were downloaded from the ArrayExpress database. Three samples of negative control and two samples subjected to 5% cyclic sinusoidal distraction at 0.25 Hz for 6 h were selected for screening differentially expressed genes (DEGs) and then analysed via bioinformatics methods. The Gene Ontology (GO) terms and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment were investigated. The protein–protein interaction (PPI) network was visualised through the Cytoscape software. Gene set enrichment analysis (GSEA) was conducted to verify the enrichment of a self-defined osteogenic gene sets collection and identify osteogenic hub genes. Results: Three hub genes (IL6, MMP2, and EP300) that were highly associated with distraction-induced osteogenesis of MSCs were identified via the Venn diagram. These hub genes could provide a new understanding of distraction-induced osteogenic differentiation of MSCs and serve as potential gene targets for optimising DO via targeted therapies.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098213
Author(s):  
Xiaodong Deng ◽  
Yuhua Liang ◽  
Jianmei Hu ◽  
Yuhui Yang

Diabetes mellitus (DM) is a chronic disease that is very common and seriously threatens patient health. Gegen Qinlian decoction (GQD) has long been applied clinically, but its mechanism in pharmacology has not been extensively and systematically studied. A GQD protein interaction network and diabetes protein interaction network were constructed based on the methods of system biology. Functional module analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Gene Ontology (GO) enrichment analysis were carried out on the 2 networks. The hub nodes were filtered by comparative analysis. The topological parameters, interactions, and biological functions of the 2 networks were analyzed in multiple ways. By applying GEO-based external datasets to verify the results of our analysis that the Gene Set Enrichment Analysis (GSEA) displayed metabolic pathways in which hub genes played roles in regulating different expression states. Molecular docking is used to verify the effective components that can be combined with hub nodes. By comparing the 2 networks, 24 hub targets were filtered. There were 7 complex relationships between the networks. The results showed 4 topological parameters of the 24 selected hub targets that were much higher than the median values, suggesting that these hub targets show specific involvement in the network. The hub genes were verified in the GEO database, and these genes were closely related to the biological processes involved in glucose metabolism. Molecular docking results showed that 5,7,2', 6'-tetrahydroxyflavone, magnograndiolide, gancaonin I, isoglycyrol, gancaonin A, worenine, and glyzaglabrin produced the strongest binding effect with 10 hub nodes. This compound–target mode of interaction may be the main mechanism of action of GQD. This study reflected the synergistic characteristics of multiple targets and multiple pathways of traditional Chinese medicine and discussed the mechanism of GQD in the treatment of DM at the molecular pharmacological level.


2020 ◽  
Vol 11 ◽  
Author(s):  
Kong Jie ◽  
Wang Feng ◽  
Zhao Boxiang ◽  
Gong Maofeng ◽  
Zhang Jianbin ◽  
...  

The arteriovenous fistula (AVF) is the first choice for vascular access for hemodialysis of renal failure patients. Venous remodeling after exposure to high fistula flow is important for AVF to mature but the mechanism underlying remodeling is still unknown. The objective of this study is to identify the molecular mechanisms that contribute to venous remodeling after AVF. To screen and identify the differentially expressed genes (DEGs) that may involve venous remodeling after AVF, we used bioinformatics to download the public microarray data (GSE39488) from the Gene Expression Omnibus (GEO) and screen for DEGs. We then performed gene ontology (GO) function analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA) for the functional annotation of DEGs. The protein-protein interaction (PPI) network was constructed and the hub genes were carried out. Finally, we harvested 12 normal vein samples and 12 AVF vein samples which were used to confirm the expressions of the hub genes by immunohistochemistry. A total of 45 DEGs were detected, including 32 upregulated and 13 downregulated DEGs. The biological process (BP) of the GO analysis were enriched in the extrinsic apoptotic signaling pathway, cGMP-mediated pathway signaling, and molting cycle. The KEGG pathway analysis showed that the upregulated DEGs were enriched in glycosaminoglycan biosynthesis and purine metabolism, while the downregulated DEGs were mainly enriched in pathways of glycosaminoglycan biosynthesis, antifolate resistance, and ABC transporters. The GSEA analysis result showed that the top three involved pathways were oxidative phosphorylation, TNFA signaling via NF-K B, and the inflammatory response. The PPI was constructed and the hub genes found through the method of DMNC showed that INHBA and NR4A2 might play an important role in venous remodeling after AVF. The integrated optical density (DOI) examined by immunohistochemistry staining showed that the expression of both INHBA and NR4A2 increased in AVF compared to the control group. Our research contributes to the understanding of the molecular mechanism of venous remodeling after exposure to high fistula flow, which may be useful in treating AVF failure.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhixin Wu ◽  
Yinxian Wen ◽  
Guanlan Fan ◽  
Hangyuan He ◽  
Siqi Zhou ◽  
...  

Abstract Background Steroid-induced osteonecrosis of the femoral head (SONFH) is a chronic and crippling bone disease. This study aims to reveal novel diagnostic biomarkers of SONFH. Methods The GSE123568 dataset based on peripheral blood samples from 10 healthy individuals and 30 SONFH patients was used for weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. The genes in the module related to SONFH and the DEGs were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Genes with |gene significance| > 0.7 and |module membership| > 0.8 were selected as hub genes in modules. The DEGs with the degree of connectivity ≥5 were chosen as hub genes in DEGs. Subsequently, the overlapping genes of hub genes in modules and hub genes in DEGs were selected as key genes for SONFH. And then, the key genes were verified in another dataset, and the diagnostic value of key genes was evaluated by receiver operating characteristic (ROC) curve. Results Nine gene co-expression modules were constructed via WGCNA. The brown module with 1258 genes was most significantly correlated with SONFH and was identified as the key module for SONFH. The results of functional enrichment analysis showed that the genes in the key module were mainly enriched in the inflammatory response, apoptotic process and osteoclast differentiation. A total of 91 genes were identified as hub genes in the key module. Besides, 145 DEGs were identified by DEGs screening and 26 genes were identified as hub genes of DEGs. Overlapping genes of hub genes in the key module and hub genes in DEGs, including RHAG, RNF14, HEMGN, and SLC2A1, were further selected as key genes for SONFH. The diagnostic value of these key genes for SONFH was confirmed by ROC curve. The validation results of these key genes in GSE26316 dataset showed that only HEMGN and SLC2A1 were downregulated in the SONFH group, suggesting that they were more likely to be diagnostic biomarkers of SOFNH than RHAG and RNF14. Conclusions Our study identified that two key genes, HEMGN and SLC2A1, might be potential diagnostic biomarkers of SONFH.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11273
Author(s):  
Lei Yang ◽  
Weilong Yin ◽  
Xuechen Liu ◽  
Fangcun Li ◽  
Li Ma ◽  
...  

Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.


Sign in / Sign up

Export Citation Format

Share Document