A Method for Estimating the Mechanical Properties of a Solid Material Subjected to Insonification - Part 1: Theory

2002 ◽  
Author(s):  
Andrew J. Hull
Author(s):  
Hanyu Song ◽  
Minglang Li ◽  
Muxuan Wang ◽  
Benxin Wu ◽  
Ze Liu ◽  
...  

Abstract A preliminary experimental study on “warm ultrasonic impact-assisted laser metal deposition” (WUI-LMD) is reported, and such a study is rare in literatures to the authors' knowledge. In WUI-LMD, an ultrasonic impact treatment (UIT) tip is placed near laser spot for in-situ treatment of laser-deposited warm solid material, and the UIT and LMD processes proceed simultaneously. Under the conditions investigated, it is found that in-situ UIT during WUI-LMD can be much more effective in reducing porosity than a post-process UIT. Possible underlying mechanisms are analyzed. WUI-LMD has a great potential to reduce defects and improve mechanical properties without increasing manufacturing time.


Author(s):  
M Ghaffarpour ◽  
D Akbari ◽  
H Moslemi Naeini

In this paper, the effects of the joint type on the driven-out bead of the roll-formed pipes, welded by high-frequency induction welding process are studied. The main goal is to predict and reduce the volume of the bead driven out in the weld seam. Moreover, it aims to move the semi-solid bead during welding to the outer diameter of the pipe. This study has two prior aims: to produce a defect-free joint and to improve the mechanical and metallurgical properties. In order to optimize the weld joint, various joint types have been investigated by experimental tests and simulation. Lastly, destructive tests were used to determine if the desired mechanical properties of the weld joint were obtained. The metallurgical properties and the derivation of the semi-solid material in the weld zone have both been investigated in terms of microstructure. According to the results, the proper joint type improves the mechanical properties by 5% and reduces the volume of the weld bead about 45%.


2014 ◽  
Vol 591 ◽  
pp. 60-63 ◽  
Author(s):  
N. Venkatesan ◽  
G.B. Bhaskar ◽  
Kaliyaperumal Pazhanivel ◽  
K. Poyyathappan

In recent years, many researches focused on the polymer materials to study the characteristics and to enhance the mechanical properties of the nanocomposites in order to understand the factors which lead to the desired dispersion of nanoclay in the polymer matrix. The samples used in this work were prepared through melt compounding, using high-density polyethylene and organo-modified clay of montmorillonite (MMT). During manufacturing of MMT/HDPE nanocomposites, a silane modifier and polyethylene grafted with maleic anhydride (compatibilizer) were added to get good surface finish and to act as bonding agent respectively. In addition, the compatibilizer will help in attaining better intercalation. Using a Plastograph-Mixer through twin-screw extruder, the high density polyethylene and different weight percentages (0, 1, 2, 3, 4 wt. %) of MMT are mixed and subsequently the composite is produced in the form of solid material. ASTM standard specimens for various tests are produced using injection molding machine with respective dies. The prepared experimental specimens for various tests like tensile, flexural, impact and shore-hardness are tested for its respective strengths. From this investigation, it is concluded that the addition of MMT nanoclay in HDPE has significantly influenced the mechanical properties of the composites.


2020 ◽  
Vol 846 ◽  
pp. 72-76
Author(s):  
Shinichi Nishida ◽  
Makoto Hagiwara ◽  
Kentaro Tsunoda ◽  
Ryoma Nakanishi ◽  
Tatsuya Tanaka ◽  
...  

This paper describes basic property in semi-solid forging method of magnesium alloy AZX1311. In the semi-solid forging process, an arbitrary fraction of solid is selected at a temperature between the liquidus and the solidus line and rapidly cooled and coagulated simultaneously with deformation of the material in a die to obtain a product. In addition, the magnesium alloy AZX1311 has excellent castability and mechanical properties. In recent years, the use of magnesium alloys for home electric appliances and automotive parts has been increasing because weight reduction can be achieved. These main manufacturing methods are casting and forging. However, these manufacturing methods have disadvantages such as large forming load and poor dimensional accuracy. Therefore, the semi-solidification forging method can improve these disadvantages. In this study, a forged semi-solid material and air cooled semi-solid material were produced using a servo press machine. Focused on impurities, porosity and microstructure. A forged semi-solid material could be produced. A semi-solid structure could be observed.


2020 ◽  
Vol 26 (2) ◽  
pp. 70-73
Author(s):  
Beata Pawlowska

This paper presents the possibility of consolidating side products of turning of aluminum alloys into the form and properties of solids metals using low-temperature KoBo extrusion method has been assessed.The proposed method is based on cold compaction of chips into briquettes, and then extrusion by KoBo method at room temperature. The extruded wires were tested for mechanical properties (uniaxial tensile test and Vickers hardness test), and compared with specific mechanical properties of solid material. A very good effect of chips compaction has been proved by KoBo method, which has been confirmed by relatively slightly different mechanical properties of the material after consolidation compared with the solid one.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5066
Author(s):  
Piotr Noga ◽  
Andrzej Piotrowicz ◽  
Tomasz Skrzekut ◽  
Adam Zwoliński ◽  
Paweł Strzępek

This article presents a method of reusing aluminum scrap from alloy 6082 using the hot extrusion process. Aluminum chips from milling and turning processes, having different sizes and morphologies, were cold pressed into briquettes prior to hot pressing at 400 °C at a ram speed of 2 mm/s. The study of mechanical properties combined with observations of the microstructures, as well as tests of density, hardness and electrical conductivity were carried out. On the basis of the results, the possibility of using the plastic consolidation method and obtaining materials with similar to a solid ingot mechanical properties, density and electrical conductivity was proven. The possibility of modifying the surface of consolidated aluminum scrap was tested in processes examples: polishing, anodizing and coloring. For this purpose, a number of analyses and tests were carried out: comparison of colors on color histograms, roughness determination, SEM and chemical composition analysis. It has been proven there are differences in the surface treatment of the solid material and that of scrap consolidation, and as such, these differences may significantly affect the final quality.


2019 ◽  
Vol 4 (4) ◽  
pp. 85-91
Author(s):  
Dániel Szabó

Nowadays orthopaedic implants are mainly fabricated from solid material (titanium alloy). The mechanical properties of these implants are much stronger than human bone tissue’s properties, and this leads to fixation problems and a short lifetime, but today these problems can be eliminated with the usage of metal additive manufacturing. The mechanical properties of the implants can be influenced on demand with the variation of the material structure using different sizes and types of unit cells for building up its structure.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Sign in / Sign up

Export Citation Format

Share Document