scholarly journals Nanotechnology in Dentistry

2017 ◽  
Vol 6 (11) ◽  
Author(s):  
José Alcides Almeida de Arruda ◽  
Cinthia Figueiredo de Oliveira ◽  
Carina Silva de Paula ◽  
Vanessa Carla Furtado Mosqueira ◽  
Amália Moreno ◽  
...  

Introduction: Nanotechnology is a rapidly expanding field that encompasses the development, manipulation, and application of structures on the nanometer scale. Applications of nanotechnology to dentistry are particularly promising and comprise materials and devices designed to achieve maximal therapeutic efficacy with minimal side effects. Objective: This review discusses the advantages of nanotechnology and the different types of nanostructures used in dentistry. Material and Method: In this study, online databases: pubmed, medline and scielo were searched to analyse the current understanding of the potential of nanotechnology in dentistry, including the restoration of tooth structure with nanocomposites and the development of nanoparticles for dentin remineralisation, drug delivery, disease diagnostics, oral analgesia, oral hygiene maintenance, local anaesthesia, tooth desensitisation, and bone tissue repair. Results: The study demonstrated a wide range of nanotechnological strategies in different dentistry areas and suggests that nanotechnology-based delivery systems may be very useful to improve treatment, prevention and repair in dentistry in the future. Conclusion: There is little or no clinical experience for the nanotechnology-based drug delivery systems cited herein. Safety assessments and clinical trials are the next step in their development.Descriptors: Nanotechnology; Dental Research; Biocompatible Materials.

2020 ◽  
Vol 5 (3) ◽  
pp. 224-235
Author(s):  
Harshal A. Pawar ◽  
Bhagyashree D. Bhangale

Background: Lipid based excipients have increased acceptance nowadays in the development of novel drug delivery systems in order to improve their pharmacokinetic profiles. Drugs encapsulated in lipids have enhanced stability due to the protection they experience in the lipid core of these nano-formulations. Phytosomes are newly discovered drug delivery systems and novel botanical formulation to produce lipophilic molecular complex which imparts stability, increases absorption and bioavailability of phytoconstituent. Curcumin, obtained from turmeric (Curcuma longa), has a wide range of biological activities. The poor solubility and wettability of curcumin are responsible for poor dissolution and this, in turn, results in poor bioavailability. To overcome these limitations, the curcumin-loaded nano phytosomes were developed to improve its physicochemical stability and bioavailability. Objective: The objective of the present research work was to develop nano-phytosomes of curcumin to improve its physicochemical stability and bioavailability. Methods: Curcumin-loaded nano phytosomes were prepared by using phospholipid Phospholipon 90 H using a modified solvent evaporation method. The developed curcumin nano phytosomes were evaluated by particle size analyzer and differential scanning calorimetry (DSC). Results: Results indicated that phytosomes prepared using curcumin and lipid in the ratio of 1:2 show good entrapment efficiency. The obtained curcumin phytosomes were spherical in shape with a size less than 100 nm. The prepared nano phytosomal formulation of curcumin showed promising potential as an antioxidant. Conclusion: The phytosomal complex showed sustained release of curcumin from vesicles. The sustained release of curcumin from phytosome may improve its absorption and lowers the elimination rate with an increase in bioavailability.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Ahmed S AbdElhamid ◽  
Dina G Zayed ◽  
Lamia Heikal ◽  
Sherine N Khattab ◽  
Omar Y Mady ◽  
...  

Polymeric nanocapsules are vesicular drug delivery systems composed of an inner oily reservoir surrounded by polymeric membranes. Nanocapsules have various advantages over other nanovesicular systems such as providing controlled drug release properties. We discuss the recent advances in polymeric shell-oily core nanocapsules, illustrating the different types of polymers used and their implementation. Nanocapsules can be utilized for many purposes, especially encapsulation of highly lipophilic drugs. They have been shown to have variable applications, especially in cancer therapy, due to the ability of the polymeric shell to direct the loaded drugs to their target sites, as well as their high internalization efficacy. Those productive applications guaranteed their high potential as drug delivery systems. However, their clinical development is still in an early stage.


Author(s):  
Ameneh Mohammadi ◽  
Pooria Gill ◽  
Pedram Ebrahimnejad ◽  
Said Abediankenari ◽  
Zahra Kashi

: The application of nanotechnology in medicine and pharmaceutical purpose suggested a novel procedure in the nanotechnology terminology as nanomedicine. There is a wide range of applications for nanotechnology in medicine, such as the use of nanocarriers in drug delivery systems. Recently a remarkable attention to DNA has been made through its amazing functionality and its nature as a nanomaterial in biological systems. Since DNA is a biocompatible, the use of DNA as a nanomaterial in medicine has shown a great perspective of rational engineering of DNA nanostructures. According to new approaches in treatment of diseases in gene levels, gene therapy, using DNA as a nanomedicine possesses an important role in the medical sciences as the researchers published enormous papers and patents in the fields, for instance, the applications of DNA and DNA-based nanostructures as drug or gene nanocarriers, DNA-based diagnostics and DNA nanovasccines. Here, some examples of DNA-based nanomedicine in the patent frame were reviewed.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Lili He ◽  
Zhenghui Shang ◽  
Hongmei Liu ◽  
Zhi-xiang Yuan

As an acidic, ocean colloid polysaccharide, alginate is both a biopolymer and a polyelectrolyte that is considered to be biocompatible, nontoxic, nonimmunogenic, and biodegradable. A significant number of studies have confirmed the potential use of alginate-based platforms as effective vehicles for drug delivery for cancer-targeted treatment. In this review, the focus is on the formation of alginate-based cancer-targeted delivery systems. Specifically, some general chemical and physical properties of alginate and different types of alginate-based delivery systems are discussed, and various kinds of alginate-based carriers are introduced. Finally, recent innovative strategies to functionalize alginate-based vehicles for cancer targeting are described to highlight research towards the optimization of alginate.


2021 ◽  
Vol 10 (1) ◽  
pp. 57-66
Author(s):  
E. O. Bakhrushina ◽  
M. N. Anurova ◽  
N. B. Demina ◽  
I. V. Lapik ◽  
A. R. Turaeva ◽  
...  

Introduction. Effective delivery of ophthalmic drugs is challenging. The eye has a number of protective systems and physiological barriers, which is why ophthalmic dosage forms have a low bioavailability, usually not exceeding 5 %. Topical drug administration is relatively easy to use and is most commonly prescribed by physicians for the treatment of ophthalmic diseases, especially the anterior segment of the eye. However, when using traditional delivery systems, a number of problems arise: patients' violation of the drug administration technique, and, as a consequence, a decrease in treatment compliance, restriction of drug delivery to the target eye tissues due to low epithelial permeability and rapid clearance after drug administration. Maintaining a constant therapeutic drug level is another challenge that traditional delivery systems often fail to cope with.Text. The article discusses the types of ophthalmic delivery systems. Traditional ones are represented by such dosage forms as eye drops, ointments, gels. Modern ophthalmic dosage forms are represented by: eye films, contact lenses and eye implants. The characteristics, advantages and disadvantages of each type of delivery systems and their promising directions of development, as well as modern developments in this area are given.Conclusion. Currently, most of the scientific research on the development of ophthalmic delivery systems is devoted to obtaining dosage forms capable of maintaining a constant concentration of the drug in the target tissue, providing the transport of active ingredients to them. This is achieved by using modern advances in nanotechnology and polymer chemistry. Receive liquid and soft dosage forms with micro-, nano- and micro-nano-carriers. Polymeric delivery systems such as films, lenses and implants are being actively developed and studied. The development of modern technological approaches opens up new possibilities for the treatment of a wide range of ophthalmic diseases by reducing the side effects often induced by the intrinsic toxicity of molecules, reducing the frequency of the administered dose and maintaining the pharmacological profile of the drug. Thus, the use of modern ophthalmic delivery systems can significantly limit the use of invasive treatments.


2021 ◽  
Author(s):  
Rejoice Thubelihle Ndebele ◽  
Qing Yao ◽  
Yan-Nan Shi ◽  
Yuan-Yuan Zhai ◽  
He-Lin Xu ◽  
...  

Nanotechnology is associated with the development of particles in the nano-size range that can be used in a wide range of applications in the medical field. It has gained more importance in the pharmaceutical research field particularly in drug delivery, as it results in enhanced therapeutic drug performance, improved drug solubility, targeted drug delivery to the specific sites, minimized side effects, and prolonged drug retention time in the targeted site. To date, the application of nanotechnology continues to offer several benefits in the treatment of various chronic diseases and results in remarkable improvements in treatment outcomes. The use of nano-based delivery systems such as liposomes, micelles, and nanoparticles in pulmonary drug delivery have shown to be a promising strategy in achieving drug deposition and maintained controlled drug release in the lungs. They have been widely used to minimize the risks of drug toxicity in vivo. In this review, recent advances in the application of nano- and micro-based delivery systems in pulmonary drug delivery for the treatment of various pulmonary diseases, such as lung cancer, asthma, and chronic obstructive pulmonary disease, are highlighted. Limitations in the application of these drug delivery systems and some key strategies in improving their formulation properties to overcome challenges encountered in drug delivery are also discussed.


2020 ◽  
Vol 27 (8) ◽  
pp. 1308-1336 ◽  
Author(s):  
Inese Mierina ◽  
Reinis Vilskersts ◽  
Māris Turks

Birch-bark triterpenoids and their semi-synthetic derivatives possess a wide range of biological activities including cytotoxic effects on various tumor cell lines. However, due to the low solubility and bioavailability, their medicinal applications are rather limited. The use of various nanotechnology-based drug delivery systems is a rapidly developing approach to the solubilization of insufficiently bioavailable pharmaceuticals. Herein, the drug delivery systems deemed to be applicable for birch-bark triterpenoid structures are reviewed. The aforementioned disadvantages of birch-bark triterpenoids and their semi-synthetic derivatives can be overcome through their incorporation into organic nanoparticles, which include various dendrimeric systems, as well as embedding the active compounds into polymer matrices or complexation with carbohydrate nanoparticles without covalent bonding. Some of the known triterpenoid delivery systems consist of nanoparticles featuring inorganic cores covered with carbohydrates or other polymers. Methods for delivering the title compounds through encapsulation and emulsification into lipophilic media are also suitable. Besides, the birch-bark triterpenoids can form self-assembling systems with increased bio-availability. Even more, the self-assembling systems are used as carriers for delivering other chemotherapeutic agents. Another advantage besides increased bioavailability and anticancer activity is the reduced overall systemic toxicity in most of the cases, when triterpenoids are delivered with any of the carriers.


Author(s):  
Pradeep Kumar S ◽  
Prathibha D ◽  
Gowri Shankar N L ◽  
Parthibarajan R ◽  
Mastyagiri L ◽  
...  

Carbon nanotubes, which are elongated fullerenes, resemble graphite sheets wrapped into cylinders with a high length-to-width ratio (few nm in diameter and up to 1 mm in length). Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding properties. Carbon nanotubes have drawn great interest and attraction in the field of novel drug delivery system. Nanomedicines can target, diagnose, monitor and treat cancerous cell also. The small nanoscale dimension and astonishing properties make them a distinctive carrier with a wide range of promising applications. These cylindrical carbon molecules have novel properties that make them potentially useful in many applications in nanotechnology. The various nano-size carrier systems are available for biotechnological applications including the drug delivery. Carbon nanotubes are typically used for bioactive delivery due to their some unique outstanding properties. Carbon nanotubes drug delivery system opens up new potential and possibilities over nanoparticles, dendrimers, liposomes etc. for biomedical applications and new drug delivery. In last few years, Carbon nanotubes (CNTs) have shown unexpected advantages in the field of cancer treatment and drug delivery systems. Present review article discuss in brief about the methods of synthesis, with purification as well as sorting techniques for giving different grades to different types of CNTs and biomedical applications. These show very good adsorption properties which helps in the detection of various chemicals, toxic agents etc. Research done using CNTs for cancer treatment is also discussed in brief.  


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 351 ◽  
Author(s):  
Diego Tesauro ◽  
Antonella Accardo ◽  
Carlo Diaferia ◽  
Vittoria Milano ◽  
Jean Guillon ◽  
...  

Peptides of natural and synthetic sources are compounds operating in a wide range of biological interactions. They play a key role in biotechnological applications as both therapeutic and diagnostic tools. They are easily synthesized thanks to solid-phase peptide devices where the amino acid sequence can be exactly selected at molecular levels, by tuning the basic units. Recently, peptides achieved resounding success in drug delivery and in nanomedicine smart applications. These applications are the most significant challenge of recent decades: they can selectively deliver drugs to only pathological tissues whilst saving the other districts of the body. This specific feature allows a reduction in the drug side effects and increases the drug efficacy. In this context, peptide-based aggregates present many advantages, including biocompatibility, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery. A dual behavior is observed: on the one hand they can fulfill a structural and bioactive role. In this review, we focus on the design and the characterization of drug delivery systems using peptide-based carriers; moreover, we will also highlight the peptide ability to self-assemble and to actively address nanosystems toward specific targets.


Sign in / Sign up

Export Citation Format

Share Document