scholarly journals 144 The Effect of Water Stress on Growth of Several Warm-season Turfgrass Species

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 414D-414
Author(s):  
Edward W. Bush ◽  
James N. McCrimmon ◽  
Allen D. Owings

Four warm-season grass species [common carpetgrass (Axonopus affinis Chase), common bermudagrass (Cynodon dactylon [L.] Pers.), St. Augustinegrass (Stenophrum secondatum Walt. Kuntze.), and zoysiagrass (Zoysia japonica Steud.)] were established in containers filled with an Olivia silt loam soil for 12 weeks. Grasses were maintained weekly at 5 cm prior to the start of the experiment. Water stress treatments consisted of a control (field capacity), waterlogged, and flooded treatments. Waterlogging and flood treatments were imposed for a period of 90 days. The effects of water stress was dependent on grass species. Bermudagrass vegetative growth and turf quality were significantly reduced when flooded. Carpetgrass, St. Augustingrass, and zoysiagrass quality and vegetative growth were also reduced by flooding. St. Augustinegrass and zoysiagrass root dry weight was significantly decreased. Zoysiagrass plants did not survive 90 days of flooding. Leaf tissue analysis for common carpetgrass, common bermudagrass, St. Augustinegrass, and zoysiagrass indicated that plants subjected to waterlogging and flooding had significantly elevated Zn concentrations.

1980 ◽  
Vol 7 (2) ◽  
pp. 207 ◽  
Author(s):  
JR Wilson ◽  
MM Ludlow ◽  
MJ Fisher ◽  
E Schulze

Three tropical grasses, green panic (Panicum maximum var, trichoglume), spear grass (Heteropogon contortus) and buffel grass (Cenchrus ciliaris) and the tropical legume siratro (Macroptilium atropurpureum), were grown in plots in a semi-arid field environment. The water relations characteristics of leaves from plants subjected to a soil drying cycle were compared with those of unstressed leaves from plants in irrigated plots. Minimum water potentials attained in the stressed leaves were c. -44, - 38, - 33 and - 13 bar for the four species, respectively. The grass leaves adjusted osmotically to water stress, apparently through accumulation of solutes, so that there was a decrease in osmotic potential at full turgor (Ψπ100) of 5.5, 3.9 and 7.1 bar, and in water potential at zero turgor (Ψ0) of 8.6, 6.5 and 8.6 bar for green panic, spear grass and buffel respectively. Water stress appeared to increase slightly the proportion of bound water (B) and the bulk modulus of elasticity (ε) of the grass leaves, but it did not alter the relative water content at zero turgor (RWC0) or the ratio of turgid water content to dry weight of the tissue. The Ψπ100 and Ψ0 of stressed siratro leaves decreased by 2.5-4 bar and 3-5 bar respectively when subjected to soil drying cycles. These changes could be explained by the marked decrease in the ratio of turgid water content to dry weight of the leaf tissue rather than by accumulation of solutes. The values of RWC0 and ε for siratro leaves were not altered by stress but, in contrast to the grasses, B was apparently decreased although the data exhibited high variability. Adjustments in Ψπ100 and Ψ0 of stressed leaves of buffel grass and siratro were largely lost within 10 days of rewatering.


2019 ◽  
Vol 11 (4) ◽  
pp. 197
Author(s):  
Diogo Mendes da Silva ◽  
Suzan Kelly Vilela Bertolucci ◽  
Smail Aazza ◽  
Alexandre Alves de Carvalho ◽  
Simony Carvalho Mendonça ◽  
...  

The purpose of the present work was to evaluate the vegetative growth of Mentha piperita L. cultivated under different water availability, as well its influence in content, chemical composition and in vitro antioxidant activity of its essential oil. Plants were propagated by mother plants microcutting and scions were transplanted to 5 L pots with soil and cattle manure. Afterward, were kept at field capacity for 30 days and under treatment for 40 days. It was treated with different levels of water deficit treatments: (T1): 100 of field capacity (FC); (T2): 80 of FC; (T3): 60 of FC; (T4) 40 of FC with 5 blocks. Vegetative growth was evaluated by dry matter contents of all part of plants and by root/aerial rate. The essential oil of the leaves was extracted by hydrodistillation, analyzed by GC-FID and GC-MS and in vitro antioxidant potential was evaluated. A significant decrease in the dry matter of leaves and stems accompanied with a decrease in the roots dry matter was observed with an increase in the water stress. Quantitative chemical differences were observed in the chemical composition of the essential oil, according water availability. Total antioxidant activity showed a gradual increase as water stress progressed.


2013 ◽  
Vol 61 (5) ◽  
pp. 383 ◽  
Author(s):  
Ana M. Cenzano ◽  
M. Celeste Varela ◽  
Mónica B. Bertiller ◽  
M. Virginia Luna

Poa ligularis Nees. Ap. Steudel and Pappostipa speciosa (Trin. et Rupr.) Romaschenko are dominant perennial grasses in the arid Patagonian rangelands of Argentina. Both species are exposed to periods of water shortage during spring-summer and are grazed by domestic and native herbivores. Pappostipa speciosa displays xeromorphic adaptations and is less preferred by herbivores than P. ligularis. The knowledge of how drought affects morphological/functional traits in coexisting perennial grass species is useful to understanding the function of desert perennial grasses, and for the use and conservation of Patagonian arid rangelands. The hypothesis of this study was that co-existing perennial grasses contrasting in drought resistance mechanisms display different degrees of phenotypic plasticity in underlying and/or functional traits. Plants of both species were exposed to two levels of gravimetric soil moisture: 16% (~field capacity) and 4%. Plant vegetative and reproductive traits were measured weekly in individual plants and these were harvested at the end of the experiment. Aboveground and root biomass were separated in the harvested plants and the concentration of photosynthetic pigments was assessed in green leaves. The trait response range was also calculated through the plasticity index. In both species, drought stress led to significant reductions in plant height, total plant dry weight, number of total leaves, dry weight of green and senescent leaf, percentage of flowering plants, length of inflorescences, and number, length and dry weight of roots. The concentration of photosynthetic pigments increased under drought in both species. In conclusion, drought strongly affected reproductive and vegetative traits in both species and the greatest negative effect of drought was found in P. speciosa, the most conservative species. However, our findings might indicate that both species are able to maintain photosynthetic activity through the increase of photosynthetic pigments under drought conditions in Patagonian rangelands.


2013 ◽  
Vol 40 (5) ◽  
pp. 466 ◽  
Author(s):  
Oumelkheir Belkheiri ◽  
Maurizio Mulas

Atriplex halimus L. is known in the Mediterranean basin and along the coastal areas of Sardinia for its adaptability to salinity, although less information is available on the resistance of this species to water stress in absence of salinity. The effect of water stress on growth and water utilisation was investigated in two Atriplex species: A. halimus originating of south Sardinian island and the exotic species Atriplex nummularia Lindl., originating in Australia and widely used in land restoration of arid areas. Water stress was applied to young plants growing in 20 L pots with a sufficient water reserve to store a potentially sufficient water reserve to maintain substrate near to field capacity (30%) between irrigations. Watering was at 70% (control) or 40% (stress) of field capacity. In order to simulate the grazing by livestock, four plant biomass cuttings were conducted at times T0, T1, T2 and T3, corresponding to one cutting at the end of well watered phase (T0) before water stress induction, two cuttings after cycles of 5 weeks each during full summer (T1) and late summer (T2) and one cutting during autumn (T3). All plants remained alive until the end of treatment although growth was strongly reduced. Leaf dry weight (DW) and water use efficiency (WUE) were determined for all cuttings; relative water content (RWC), turgid weight : dry weight ratio (TW : DW), water potential (Ψw), osmotic potential (Ψs), CO2 assimilation, osmotic adjustment (OA), abscisic acid (ABA) and sugar accumulation were determined for the late summer cutting at T2. Water stress induced a decrease in DW, RWC, Ψw, Ψs, TW : DW and CO2 assimilation for both species, but an increase in WUE expressed in terms of dry matter production and a high accumulation of ABA and total sugars mainly for A. halimus. This suggests a more developed adaptive mechanism in this selection. Indeed, the clone was selected from the southern part of the island, where natural populations of saltbush are more exposed to abiotic stresses, mainly the water stress generated not by salinity. A. nummularia showed a greater OA and a positive net solute accumulation as than A. halimus, suggesting that water stress resistance in A. halimus is linked to a higher WUE rather than a greater osmotic adjustment.


2015 ◽  
Vol 30 (1) ◽  
pp. 1 ◽  
Author(s):  
Anindita Dwi Yogi Sapta Ratri ◽  
Bambang Pujiasmanto ◽  
Ahmad Yunus

<p><em>Turmeric is a medicinal plant that has largest secondary metabolites (curcumin). Improving secondary metabolites with abiotic stress that the provision of shade and water stress. This research aims to study the effects of shade and water stress on growth and yield of turmeric and content of secondary metabolites. The study uses a nested design with two factors, namely shade (without shade, 25%, 50%, 75%) and water stress (without stress, 25% field capacity, 50% field capacity, 25% field capacity). Analysis using the F test and DMRT 5% level. The results showed that shade did not effect to fresh and dry weight of plant. 75% shade decrease root lenght, fresh and dry weight of rhizome. Water stress did not effect to growth and yield of turmeric. The highest curcumin results in conditions without shade and without stress.</em></p>


Author(s):  
Aziz Mahdi Abd, Hussien Aziz Mohammed, Waleed Fouad AbdulHas

Experiment was conducted during spring season 2017 in the experimental station of the Department of Horticulture and Landscape, College of Agriculture Diyala University, Iraq. In order to understand some of the effects and adaptations of the vegetative growth of the cucumber plant affected by water stress and the experiments were arranged in a Split-Split Plot Design in R.C.B.D. and with three replicates. The experiment factors were as follows: the genotypes of cucumbers, namely Demmy (V1) and Ghazeer (V2) and Wesam (V3), and second: two levels of irrigation are Complete irrigation 100% (I1) of field capacity and 50% of complete irrigation (I2). Third, spray glutathione in three concentrations (0, 50, 100) mg L-1 and its symbol (G0, G1, G2). The results of the study showed the superiority of the genotype plants in the number of leaves and leafy area (91.72 leaves plan-1 and 213.9 dcm2 plants-1) respectively. whereas the irrigated plants exceeded the level 100% significantly for all studied traits compared with the level of irrigation 50%. Also, the glutathione spray levels exceeded 50 and 100 mg L-1 (without significant difference between them) by all the characteristics compared to the comparison treatment (G0). The results of the triple interference between the genotypes, irrigation levels, and levels of glutathione spraying showed significant differences in the vegetative growth of cucumber plants, Since the treatment of interference V3I1G2 was superior to the number of branches (5, 766 branches plant-1), the total paper area (239.0 dcm 2 plants-1) and the concentration of chlorophyll (45.72 spad), While treatment V3I1G1 was superior to the number of leaves (99.66 leaves per plant-1) and dry matter percentage in the vegetative total(16.00%), and treatment V2I1G2 to excellence in plant length (148.6 cm).


Distribution as well as adaptation of Cynodon dactylon to different ecological zones of Bangladesh is mainly dependant on weather and adaphic factors of their respective habitats. Generally, it is a warm season perennial grass species that initiates growth in the vernal season and its growth continues rapidly when moisture is adequate and they find the alkaline clay soil as their habitat. From that point of view, this study was aimed at analysing the morphological variations of Cynodon dactylon ecotypes along with determining the physicochemical properties of soils from their particular habitats. A total of 19 ecotypes /accessions from four different zones of Bangladesh were collected along with the habitat soil and all of them were transplanted in experimentation field of Institute of Biological Sciences, University of Rajshahi, Bangladesh. All the accessions were established in 1.5 × 1.4 m plots separately. At maturity just after started flowering, the morphological data on 26 characters were recorded quantitatively and those were analysed statistically. Rhizomatous and stoloniferous nature was observed from randomly selected areas within the plot. Both significant and non-significant variations were found among the morphological characters. Most of the vegetative and reproductive characters were found to show significant variations among the accessions. In addition, the values obtained on physio-chemical properties of soil were tabulated and their magnitude were determined and interpreted following Fertilization Recommendation Guide. In respect of soil properties variation on morphological parameters of almost of all the accessions were observed. In this study, all the accessions were found to be adapted nicely in alkaline soil of the experimentation field and that might be due to their many physiological and biochemical mechanisms.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 559 ◽  
Author(s):  
Lin ◽  
Lin ◽  
Wu ◽  
Chang

Water deficits during the growing season are a major factor limiting crop production. Therefore, reducing water use during crop production by the application of regulated deficit irrigation (RDI) is crucially important in water resources. There are few reports on the biostimulants used for growth and water use efficiency (WUE) in maize (Zea mays Linn.) under RDI. Therefore, the influence of betaine and chitin treatments, alone and in combination, on maize cultivar ‘White Pearl’ was assessed by observing changes in the physiology and morphology of plants exposed to RDI. Plants were grown in plastic pots in greenhouses and maintained under full irrigation (FI) for 1 week until imposing RDI and biostimulants. Plants were then subjected to FI (no water deficiency treatment, field capacity >70%) and RDI (field capacity <50%) conditions until the end of each experiment. Plant agronomic performance, photosynthesis parameters, and WUE values were recorded weekly for 8 weeks and three individual experiments were carried out to assess the efficacy of biostimulants and irrigation treatments. Betaine (0, 50, and 100 mM/plant) was foliage-treated every 2 weeks during Experiment 1, but chitin (0, 2, and 4 g/kg) was applied to the soil at the beginning of Experiment 2. The optimal concentration of each chemical alone or in combination was then applied to the plants as Experiment 3. A factorial experiment design of two factors with different levels under a completely randomized arrangement was used in this investigation. Betaine (50 mM) or chitin (2 g/kg) treatments alone significantly elevated total fresh weight (63.03 or 124.07 g/plant), dry weight (18.00 or 22.34 g/plant), and cob weight (3.15 or 6.04 g/plant) and boosted the water-stress tolerance of the maize under RDI compared to controls. However, a combination treatment of 50 mM betaine and 2 g/kg chitin did not increase plant height, fresh shoot and root weights, dry cob weight, and total dry weight under RDI compared to controls. Soil-plant analysis development (SPAD) values (>30) were effective in detecting plant growth performance and WUE values under RDI. These findings may have greater significance for farming in dry lands and offer information for further physiological studies on maize WUE and water stress tolerance


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 517e-517
Author(s):  
Jennifer Warner ◽  
Albert H. Markhart

Secondary compounds, essential oils, and flavor components of leaf tissue often increase in response to environmental stress. The objective of this study is to determine if a simple measure of soil matric potential could be used to generate mild plant water stress in sweet basil, which would improve the flavor components of the foliage. Sweet basil was grown in Universal Soil Mix with adequate water and fertilization in greenhouses supplied with 18 h of high-pressure sodium supplemental lighting until the third pair of leaves was fully expanded. Aquaprobe matric potential sensors were installed in the center of the pot and soil matric potentials recorded daily. Water was withheld from stressed plants until the soil water potential reached –4 bars. Treatments consisted of one or two stress cycles. Plants were harvested 24 h after rewatering and fresh and dry weights determined. The youngest two fully expanded leaves were placed in zip log bags and used in a taste test. The two water stress treatments decreased leaf fresh weight by 10% and 16%, respectively, decreased total plant dry weight by 6% and 10%, respectively, and had moderate effect on flavor intensity as rated by our taste test panel. The substantial decrease in yield suggests that –4 bars was too severe a stress to be used commercially. The Aquaprobe sensor was an easy to use economical way to monitor soil water and could be useful in regulating watering in a greenhouse environment.


2013 ◽  
Vol 27 (1) ◽  
pp. 138-142 ◽  
Author(s):  
James T. Brosnan ◽  
Gregory K. Breeden

Common bermudagrass is a problematic weed within tall fescue turfgrass. Field research was conducted from 2010 to 2012 in Knoxville, TN, evaluating the efficacy of sequential applications of topramezone (12.5 and 25 g ha−1), triclopyr (1,120 g ha−1), and mixtures of topramezone + triclopyr for bermudagrass control in tall fescue turf. Sequential applications of fenoxaprop + triclopyr (100 + 1,120 g ha−1) were included for comparison. Three applications of each treatment were applied at 21-d intervals during July, August, and September of 2010 and 2011. Plots were stripped to receive tall fescue interseeding at 0 or 490 kg ha−1 during September 2010 and 2011. Bermudagrass control with topramezone + triclopyr mixtures was greater than topramezone or triclopyr applied alone 14 wk after initial treatment (WAIT) each year. In the second year of this study, topramezone + triclopyr mixtures controlled bermudagrass 27 to 50% compared to 27% for fenoxaprop + triclopyr by 52 WAIT. However, bermudagrass control with topramezone + triclopyr mixtures increased to 88 to 92% by 52 WAIT when accompanied with tall fescue interseeding at 490 kg ha−1. Future research should evaluate effects of interseeding on the efficacy of different herbicides for weed control in cool- and warm-season turf.


Sign in / Sign up

Export Citation Format

Share Document