scholarly journals Imidacloprid Insecticide Slows Development of Phony Peach and Plum Leaf Scald

2005 ◽  
Vol 15 (3) ◽  
pp. 642-645 ◽  
Author(s):  
James D. Dutcher ◽  
Gerard W. Krewer ◽  
Benjamin G. Mullinix

Observations in controlled field experiments over 5 years indicated that imidacloprid, applied as a soil drench around the trunks of peach (Prunus persica), nectarine (P. persica var. nectarine) and japanese plum (P. salicinia) trees at planting and in the early spring and mid-summer for two subsequent seasons (0.7 g/tree a.i.), slowed the development of symptoms of phony peach disease (PPD) and plum leaf scald (PLS) (Xylella fastidiosa) in the trees. After 3.5 years, the percentage of peach trees showing PPD symptoms was 8.5% for the imidacloprid-treated trees compared to 34.3% for untreated trees. After 4.5 years, the percentage of peach trees showing PPD symptoms was 13.1% in the treated trees and 71.4% in the untreated trees. After 3.5 years, nectarine trees in untreated and treated plots showed PPD symptoms in 8.3% and 0.9% of the trees, respectively. After 4.5 years, PPD symptoms in nectarine were found in 32.3% of the untreated trees and 8.5% of the treated trees. Development of PLS disease in plum was also slowed by the trunk drench with imidacloprid in two japanese plum varieties. After 3.5 years, dieback was observed in 55% of the twigs of untreated and 23% of the twigs of treated trees of `Au Rosa' plum and 33% of the twigs of untreated and 12% of the twigs of treated trees of `Santa Rosa' plum.

1994 ◽  
Vol 8 (4) ◽  
pp. 840-848 ◽  
Author(s):  
Chester L. Foy ◽  
Susan B. Harrison ◽  
Harold L. Witt

Field experiments were conducted at two locations in Virginia to evaluate the following herbicides: alachlor, diphenamid, diuron, metolachlor, napropamide, norflurazon, oryzalin, oxyfluorfen, paraquat, pendimethalin, and simazine. One experiment involved newly-transplanted apple trees; the others, three in apple and one in peach trees, involved one-year-old trees. Treatments were applied in the spring (mid-April to early-May). Control of annual weed species was excellent with several treatments. A broader spectrum of weeds was controlled in several instances when the preemergence herbicides were used in combinations. Perennial species, particularly broadleaf species and johnsongrass, were released when annual species were suppressed by the herbicides. A rye cover crop in nontreated plots suppressed the growth of weeds. New shoot growth of newly-transplanted apple trees was increased with 3 of 20 herbicide treatments and scion circumference was increased with 11 of 20 herbicide treatments compared to the nontreated control. Growth of one-year-old apple trees was not affected. Scion circumference of one-year-old peach trees was increased with 25 of 33 herbicide treatments.


Weed Science ◽  
1979 ◽  
Vol 27 (6) ◽  
pp. 638-641 ◽  
Author(s):  
C. E. Arnold ◽  
J. H. Aldrich

Field experiments were conducted in 1974 and 1975 to evaluate the effect of seven herbicides applied preemergence and two herbicides applied postemergence on weed growth around 7-yr-old pecan [Carya illinoensis(Wang.) K. Koch ‘Elliott’ and ‘Desirable’] and 3-yr-old peach [Prunus persica(L.) Batsch ‘June Gold’] and to observe herbicidal tolerance as noted from visually expressed phytotoxicity. After 12 weeks, the best control of bermudagrass [Cynodon dactylon(L.) Pers.], purple nutsedge(Cyperus rotundusL.), and wild blackberry (Rubus cuneifoliusPursh) was obtained with glyphosate [N-(phosphonomethyl)glycine], napropamide [2-(α-naphthoxy)-N,N-diethylpropionamide] + glyphosate, and napropamide + terbacil (3-tert-butyl-5-chloro-6-methyluracil) + paraquat (1,1′dimethyl-4,4′-bipyridinium ion). The most effective overall control of yellow nutsedge (Cyperus esculentusL.), camphorweed [Heterotheca subaxillaris(Lam.) Britt. & Rusby], dogfennel [Eupatorium capillifolium(Lam.) Small], large crabgrass [Digitaria sanguinalis(L.) Scop.], and Florida pusley (Richardia scabraL.) resulted from napropamide + terbacil + paraquat. Herbicides used caused no visible toxicity to the immature pecan or peach trees.


2017 ◽  
Vol 1 (92) ◽  
pp. 78-84
Author(s):  
G. Koval ◽  
M. Kaliyevskiy ◽  
V. Yeshchenko ◽  
I. Martyniuk ◽  
N. Martyniuk

The article presents the results of field experiments, where on the basis of podsolized heavy loamy chernozem the influence of replacement of mouldboard ploughing with nonmouldboard cultivation over top soil weediness, weediness at the beginning and end of spring crop vegetation and weed species composition before harve sting were studied. Investigation methods of main fall ploughing under spring crops of five-course rotation: soybeans–rape–wheat–flax–barley at the depths of 15-17, 20-22, 25-27 cm were conducted after post-harvest field tillage. Analysis of data on contamination of the top soil with weed seeds have shown that with the replacement of fall main mouldboard ploughing gwith nonmouldboard cultivation the figure before sowing of all crops withdifferent tillage depthat crop rotation average increased by 131-132%. It caused the increase of actual weed infestation of all crops and at the beginning and end of spring crop vegetationafter different depths of fall nonmouldboard cultivation compared with ploughing at crop rotation average it was 120–132 and 123-138%respectively. Species composition of weeds afterthe replacement of main fall mouldboard ploughing with nonmouldboard cultivation remained mainlyunchanged; although in rape plantings the proportion of white campion and early spring weed sincreased, in wheat plantings– wild mustard andscentless mayweed, insoybean plantings– late spring weeds, in flax plantings– white campion, and in barley plantings– scarlet pimpernel.


Weed Science ◽  
1985 ◽  
Vol 33 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Stephen C. Weller ◽  
Walter A. Skroch ◽  
Thomas J. Monaco

Field experiments conducted over a 2-yr period demonstrated that common bermudagrass [Cynodon dactylon (L.) Pers. # CYNDA] inhibited growth of newly planted peach (Prunus persica L. ‘Norman’) trees. Common bermudagrass densities of 100, 75, 50, and 25% ground cover reduced tree fresh weight by 86, 64, 43, and 19%, respectively, the first year (1978) and 87, 62, 44, and 28%, respectively, the second year (1979) after planting. Tree trunk diameter relative growth rate (RGR) was reduced by 75 and 100% common bermudagrass ground cover densities at all measurement dates only in 1978. Tree leaf N and K were reduced in both years by common bermudagrass; however, only at the 100% common bermudagrass density in 1978 was N at a deficient level. Leaf chlorophyll was reduced in trees grown in all densities of common bermudagrass only in 1978. Reduced tree growth cannot be explained entirely by competition for essential nutrients; thus an allelopathic effect of the bermudagrass on young peach roots is suspected.


2010 ◽  
Vol 142 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Peter J. Landolt ◽  
D. Thomas Lowery ◽  
Lawrence C. Wright ◽  
Constance Smithhisler ◽  
Christelle Gúedot ◽  
...  

AbstractLarvae of Abagrotis orbis (Grote) (Lepidoptera: Noctuidae) are climbing cutworms and can damage grapevines, Vitis vinifera L. (Vitaceae), in early spring by consuming expanding buds. A sex attractant would be useful for monitoring this insect in commercial vineyards. (Z)-7-Tetradecenyl acetate and (Z)-11-hexadecenyl acetate were found in extracts of female abdominal tips. In multiple field experiments, male A. orbis were captured in traps baited with a combination of these two chemicals but not in traps baited with either chemical alone. Males were trapped from mid-September to early October in south-central Washington and south-central British Columbia. Other noctuid moths (Mamestra configurata Walker, Xestia c-nigrum (L.), and Feltia jaculifera (Guenée)) were also captured in traps baited with the A. orbis pheromone and may complicate the use of this lure to monitor A. orbis. Abagrotis discoidalis (Grote) was captured in traps baited with (Z)-7-tetradecenyl acetate but not in traps baited with the two chemicals together.


1993 ◽  
Vol 73 (3) ◽  
pp. 847-855 ◽  
Author(s):  
H. A. Quamme ◽  
R. T. Brownlee

Early performance (6–8 yr) of Macspur McIntosh, Golden Delicious, and Spartan apple (Malus domestica Borkh.); Fairhaven peach [Prunus persica (L.) Batsch.]; Montmorency sour cherry (P. cerasus L.); and Lambert sweet cherry (P. avium L.) trees, tissue cultured (TC) on their own roots, was compared with that of the same cultivars budded on commercially used rootstocks. TC trees of all apple cultivars were similar in size to trees budded on Antonovka seedling or M.4 and exceeded the size of trees budded on M.26. They were delayed in flowering and in cropping compared with trees budded on M.26 and M.4. No difference in titratable acidity, soluble solids, flesh firmness, weight, flavor, and color between fruit from TC trees and from trees on M.4 and Antonovka seedlings was detected in 1 yr of measurement. However, fruit from TC Golden Delicious was more russeted and fruit from TC Spartan had more soluble solids. The difference in fruit appearance between TC and budded trees may result from a root-stock effect or a difference in budwood source, because Spartan fruit from trees on M.4 was more russeted than Spartan fruit from TC trees, but was not different from Spartan fruit from trees on Antonovka seedling. Trees of Macspur McIntosh on TC M.26 and on stool-layered M.26 were similar in size and yield efficiency. TC Fairhaven was larger in size than Fairhaven on Siberian C seedling, but was less yield efficient. No difference in fruit size, flesh firmness, or color was detected between fruit harvested from peach trees on the different roots. Montmorency and Lambert TC and on F12/1 were similar in tree size, respectively, but Montmorency and Lambert TC were more yield efficient than on F12/1. Fruit of TC Lambert was lighter in color and had higher titratable acidity than that of Lambert on F12/1, perhaps a result of earlier fruit maturity. Key words: Apple, peach, sweet cherry, sour cherry, self-rooted, rootstocks


2004 ◽  
Vol 84 (2) ◽  
pp. 419-430 ◽  
Author(s):  
G. W. Clayton ◽  
K. N. Harker ◽  
J. T. O’Donovan ◽  
R. E. Blackshaw ◽  
L. M. Dosdall ◽  
...  

More flexible and effective weed control with herbicide-tolerant B. napus canola allows for additional seeding management options, such as fall (dormant) and early spring (ES) seeding. Field experiments were conducted at Lacombe and Beaverlodge (1999–2001), Didsbury (1999–2000), and Lethbridge (2000–2001), Alberta, Canada, primarily to evaluate the effect of fall (late October-November), ES (late April-early May), and normal spring (NS) (ca. mid-May) seeding dates on glufosinate-, glyphosate-, and imidazolinone-tolerant canola development and yield. Fall seeding resulted in 46% lower plant density and nearly double the dockage than spring seeding. ES-seeded canola had 19% higher seed yield and 2.1% higher oil content than fall-seeded canola. ES seeding significantly increased yield compared to fall-seeded canola for 8 of 10 site -years or compared to NS seeding for 4 of 10 site-years; ES-seeded canola equalled the yield of NS-seeded canola for 6 of 10 site-years. Yield response to seeding date did not differ among herbicide-tolerant cultivars. Seeding date did not influence root maggot damage. Seeding canola as soon as possible in spring increases the likelihood of optimizing canola yield and quality compared to fall seeding and traditional spring seeding dates. Key words: Dormant seeding, seeding management, root maggot, herbicide-resistant crops, yield components, operational diversity


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 871-871 ◽  
Author(s):  
J. J. Randall ◽  
J. French ◽  
S. Yao ◽  
S. F. Hanson ◽  
N. P. Goldberg

Xylella fastidiosa is a gram-negative bacterium that causes disease in a wide variety of plants such as grapes, citrus trees, oleanders, and elm and coffee trees. This bacterium is xylem limited and causes disease symptoms such as leaf scorch, stunting of plant growth, branch dieback, and fruit loss. The presence of X. fastidiosa was previously reported in New Mexico where it was found to be infecting chitalpa plants and grapevines (3). In the summer of 2010, peach (Prunus persica (L.) Batsch) trees from two locations in northern New Mexico exhibited leaf deformity and stunting, dark green venation, slight mottling, and branch dieback. Preliminary viral diagnostic screening was performed by Agdia (Elkhart, IN) on one symptomatic tree and it was negative for all viruses tested. Three trees from two different orchards tested positive for X. fastidiosa by ELISA and PCR analysis using X. fastidiosa-specific primer sets HL (1) and RST (2). Bacterial colonies were also cultured from these samples onto periwinkle wilt media. Eight colonies obtained from these three plants tested PCR positive using the X. fastidiosa-specific primers. The 16S ribosomal and 16S-23S rRNA internal transcribed spacer (ITS) region (557 nucleotides) (GenBank Accession No. HQ292776) along with the gyrase region (400 nucleotides) (GenBank Accession No. HQ292777) was amplified from the peach total DNA samples and the bacterial colonies. Sequencing analysis of these regions indicate that the X. fastidiosa found in peach is 100% similar to other X. fastidiosa multiplex isolates including isolates from peach, pecan, sycamore, and plum trees and 99% similar to the X. fastidiosa isolates previously found in New Mexico. Further analysis of the 16S ribosomal and 16S-23S rRNA ITS sequences with maximum likelihood phylogenetic analysis using Paup also groups the peach isolates into the X. fastidiosa multiplex subspecies. The gyrase sequence could not be used to differentiate the peach isolates into a subspecies grouping because of the lack of variability within the sequence. This X. fastidiosa multiplex subspecies could possibly be a threat to the New Mexico pecan industry since pecan infecting X. fastidiosa isolates belong to the same bacterial subspecies. It is not known if X. fastidiosa subspecies multiplex isolates from peach are capable of infecting pecans but they are closely genetically related. It is interesting to note that the isolates from peach are different than previously described X. fastidiosa isolates in New Mexico that were infecting chitalpa and grapes (3). X. fastidiosa has previously been described in peach; the disease is called “phony peach”. The peach trees exhibited stunting and shortened internodes as reported for “phony peach”. They also exhibited slight mottling and branch dieback that may be due to the environment in New Mexico or perhaps they are also exhibiting mineral deficiency symptoms in association with the X. fastidiosa disease. To our knowledge, this is the first report of X. fastidiosa in peach in New Mexico. References: (1) M. H. Francis et al. Eur. J. Plant Pathol. 115:203, 2006. (2) G. V. Minsavage et al. Phytopathology 84:456, 1994. (3) J. J. Randall et al. Appl. Environ. Microbiol. 75:5631, 2009.


1992 ◽  
Vol 117 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Dean R. Evert ◽  
Paul F. Bertrand ◽  
`Benjamin G. Mullinix

Bahiagrass (Paspalum notatum Flugge cv. Paraguayan-22) growing under newly planted peach [Prunus persica (L.) Batsch.] trees severely stunted the trees. Neither supplemental fertilizer nor irrigating with two 3.8-liters·hour-1 emitters per tree eliminated tree stunting emitters were controlled by an automatic tensiometer set to maintain 3 kpa at a depth of 0.5 m under a tree in bahiagrass. Preplant fumigation with ethylene dibromide at 100 liters·ha-1 increased tree growth, but not tree survival. Fenamiphos, a nematicide, applied under the trees each spring and fall at a rate of 11 kg-ha -1 had no positive effect on tree survival, tree growth, or nematode populations. Bahiagrass tended to suppress populations of Meloidogyne spp. under the trees., Meloidogyne spp. were the only nematodes present that had mean populations > 65 per 150 cm3 of soil. Leaf concentrations of several elements differed between trees growing in bahiagrass sod and in. bare ground treated with herbicides. Leaf Ca was low for all treatments in spite of a soil pH near 6.5 and adequate soil Ca. The severe stunting of trees grown in bahiagrass, irrespective of the other treatments, demonstrated that bahiagrass should not be grown under newly planted trees. The low populations of parasitic nematodes in bahiagrass showed that bahiagrass has potential as a preplant biological control of nematodes harmful to peach trees. Chemical name used: ethyl 3-methy1-4-(methylthio) phenyl (1-methylethyl) phosphoramidate (fenamiphos).


Sign in / Sign up

Export Citation Format

Share Document