scholarly journals Adsorption characteristics of ammonium onto biochar from an aqueous solution

Author(s):  
Shamim A. Begum ◽  
A. H. M. Golam Hyder ◽  
Qwanikwia Hicklen ◽  
Taylor Crocker ◽  
Ben Oni

Abstract Ammonium contamination in water is a major concern worldwide. This study focuses on the removal of ammonium from aqueous solution by batch adsorption experiments using biochar derived from a combination of various wood chips (spruce, pine, and fir). Adsorption characteristics of ammonium onto biochar were evaluated as a function of biochar dosages, initial concentrations of ammonium, contact time and pH. Results demonstrated that ammonium removal increased with the increase of biochar dosage. The percentage of ammonium removal reached a value of 80% at a biochar dosage of 100 g/L. Ammonium removal decreased by 15% with the increase of initial ammonium concentration by 50 mg/L. The optimum pH for ammonium removal was considered in the range from 6 to 8. Ammonium removal reached its stable value within 3 days. The maximum adsorption capacity of ammonium was 0.96 mg/g for 80 mg/L of initial ammonium concentration. The adsorption isotherm followed both the Langmuir and Freundich models for ammonium adsorption onto biochar. Fourier Transform Infrared (FTIR) spectroscopy results indicated the presence of amine, amide and nitrile functional groups on the surface of biochar which could contribute to the adsorption of ammonium onto biochar. Thus, biochar derived from various wood chips showed the potential to remove ammonium from aqueous solution.

2015 ◽  
Vol 43 (3) ◽  
pp. 277-281 ◽  
Author(s):  
M Rahman ◽  
S Gul ◽  
M Ajmal ◽  
A Iqbal ◽  
Akk Achakzai

Removal of cadmium from aqueous solution was studied by using Quetta pine (Pinus halepensis Mill.) leaves. Batch adsorption experiments were performed as a function of appropriate equilibrium time, pH, concentration of adsorbate and amount of adsorbent. The optimum pH required for maximum adsorption was found to be 7.0 and the maximum contact time for the equilibrium was 30 minutes at adsorbent dose of 10 g. The maximum adsorption efficiency of cadmium removal was 98.50%. The results were better fitted by Langmuir than Freundlich isotherm. The separation factor of equilibrium 0.12 and 0.67 showed that Quetta pine leaves are good adsorbent of cadmium from aqueous solution DOI: http://dx.doi.org/10.3329/bjb.v43i3.21598 Bangladesh J. Bot. 43(3): 277-281, 2014 (December)


2016 ◽  
Vol 6 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Muhamed Kutty ◽  
Muhamed Hasnain Isa ◽  
Nasir Aminu

Pollution caused by heavy metals has become a serious problem to the environment nowadays. The treatment of wastewater containing heavy metals continues to receive attention because of their toxicity and negative impact on the environment. Recently, various types of adsorbents have been prepared for the uptake of heavy metals from wastewater through the batch adsorption technique. This study focused on the removal of zinc from aqueous solution using microwave incinerated sugarcane bagasse ash (MISCBA). MISCBA was produced using microwave technology. The influence of some parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of zinc was investigated. The competition between H+ and metal ions has affected zinc removal at a low pH value. Optimum conditions for zinc removal were achieved at pH 6.0, contact time 180 min and adsorbent dosage of 10 g/L, respectively. The maximum adsorption capacity for the removal of zinc was found to be 28.6 mg/g. The adsorption process occurred in a multilayered surface of the MISCBA. Chemical reaction was the potential mechanism that regulates the adsorption process. MISCBA can be used as an effective and cheap adsorbent for treatment of wastewater containing zinc metal ions.


2021 ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

Abstract In the present work, we modified ZSM-5 zeolite using a bio polymer poly (diallyl dimethyl ammonium chloride) and employed it for the removal of cationic dye, methylene blue from aqueous solution. The chemical and physical properties of the modified ZSM-5 zeolite were investigated using XRD, FTIR, SEM, TEM, nitrogen adsorption, TGA and 27Al NMR. Modified ZSM-5 zeolite possesses high surface area and pore diameter which was confirmed from SEM, TEM and nitrogen adsorption analysis. Adsorption of methylene blue on zeolite was investigated by batch adsorption technique. The effect of different parameters such as zeolite dosage, initial methylene blue concentration, temperature, pH and contact time on the adsorption process was discussed. Maximum adsorption capacity (4.31 mg/g) was achieved using 0.1g of modified ZSM-5 zeolite at the optimum conditions (initial dye concentration: 10 mg/L, pH: 10, temperature:30oC and contact time: 300 min). The experimental data were fitted into Langmuir and Freundlich models and the results indicate that the adsorption process followed Freundlich isotherm. Kinetic data were investigated using pseudo-first-order and pseudo-second-order models. Kinetic analysis indicates that pseudo-second-order model is more suitable to describe adsorption of MB on modified ZSM-5 zeolite. The reusability test suggests that the adsorbent could be reused at least six times without significant loss in removal efficiency.


Author(s):  
Nnaemeka John Okorocha ◽  
Chijioke E. Omaliko ◽  
Collins C. Osuagwu ◽  
Maureen O. Chijioke-Okere ◽  
Conrad K. Enenebeaku

The prospective of maize cob powder (MCP) as an effective adsorbent for the removal of malachite green (MG) and congo red (CR) dyes from aqueous solution was investigated. The presence of functional groups and pores on maize cob powder were confirmed by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were examined to observe their effects in the dyes adsorption process. The optimum conditions for the adsorption of MG and CR onto the adsorbent (MCP) was found to be: contact time (60mins), pH (10.0) and temperature (303 K), adsorbent dose (1 g) for an initial MG dye concentration of 50 mg/L and contact time (80mins), pH (2.0) and temperature (343 K) for an initial CR dye concentration of 50 mg/L and adsorbent dose 1.0 g respectively. The experimental equilibrium adsorption data fitted best and well to the Freundlich isotherm model for CR dye adsorption and Langmuir Isotherm for MG adsorption. The maximum adsorption capacity was found to be 13.02 mg/g and 9.41 mg/g for the adsorption of MG and CR dyes respectively. The kinetic data conformed to the pseudo-second-order kinetic model. Thermodynamic quantities such as Gibbs free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were evaluated and the negative values of ΔG0, ΔH0 and ΔS0 obtained indicated the spontaneous and exothermic nature of the MG adsorption process while positive enthalpy (ΔH0) indicated an endothermic nature of CR adsorption process.


2010 ◽  
Vol 62 (5) ◽  
pp. 1177-1182 ◽  
Author(s):  
Shariff Ibrahim ◽  
Is Fatimah ◽  
Ha-Ming Ang ◽  
Shaobin Wang

An agricultural waste derived adsorbent was prepared by chemically modified barley straw with NaOH and a cationic surfactant hexadecylpyridinium chloride monohydrate (CPC). The prepared adsorbent, BMBS, was used for removal of anionic dyes; Acid Blue (AB40) and Reactive Blue 4 (RB4) from aqueous solution in a batch adsorption system. The adsorbent was characterized by FT-IR and elemental composition. The stability of CPC adsorbed on straw surface was also evaluated by exposing to aqueous solution. In adsorption tests, influence of operation parameters such as contact time, initial concentration and pH of solution on AB40 and RB4 uptake were investigated and discussed. The CPC was observed strongly attached to straw surface and removal percentage of AB40 and RB4 was increased with increasing in contact time. The adsorption of dyes on modified straw surface was favorable at high acidic condition and desorption was found relatively low upon exposing to the desorption agent (i.e water). Dynamic experiment revealed that the kinetic data fitted well to the pseudo-second-order model for both of the dyes. The isotherm study also indicated that RB4 and AB40 adsorption suited well with the Langmuir model, The maximum adsorption capacity determined from the Langmuir isotherm at 25°C was 51.95 mg g−1 and 31.5 for AB40 and RB4, respectively.


2014 ◽  
Vol 9 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Rajeshwar M. Shrestha ◽  
Margit Varga ◽  
Imre Varga ◽  
Amar P. Yadav ◽  
Bhadra P. Pokharel ◽  
...  

Activated carbons were prepared from Lapsi seed stone by the treatment with H2SO4 and HNO3 for the removal of Ni (II) ions from aqueous solution. Two activated carbon have been prepared from Lapsi seed stones by treating with conc.H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of Ni(II) ions. Chemical characterization of the resultant activated carbons was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxyl, lactones and phenols in the carbons. The optimum pH for nickel adsorption is found to be 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Ni (II) on the resultant activated carbons was 28.25.8 mg g-1 with H2SO4 and 69.49 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Ni (II) from water. DOI: http://dx.doi.org/10.3126/jie.v9i1.10680Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 166–174


Author(s):  
Conrad K. Enenebeaku ◽  
Nnaemeka J. Okorocha ◽  
Uchechi E. Enenebeaku ◽  
Ikechukwu C. Ukaga

The potential of white potato peel powder for the removal of methyl red (MR) dye from aqueous solution was investigated. The adsorbent was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MR onto the adsorbent (WPPP) was found to be contact (80 mins), pH (2) and temperature (303K) for an initial MR dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MR) dye fitted best and well to the Freundlich isotherm model. The maximum adsorption capacity was found to be 30.48mg/g for the adsorption of MR. The kinetic data conforms to the pseudo – second order kinetic model.


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Venkateswara Rao Surisetty ◽  
Janusz Kozinski ◽  
L. Rao Nageswara

Ficus benghalensisL., a plant-based material leaf powder, is used as an adsorbent for the removal of lead ions from aqueous solution using the biosorption technique. The effects of process parameters such as contact time, adsorbent size and dosage, initial lead ion concentration, and pH of the aqueous solution on bio-sorption of lead byFicus benghalensisL. were studied using batch process. The Langmuir isotherm was more suitable for biosorption followed by Freundlich and Temkin isotherms with a maximum adsorption capacity of 28.63 mg/g of lead ion on the biomass ofFicus benghalensisL. leaves.


2018 ◽  
Vol 36 (3-4) ◽  
pp. 1112-1143 ◽  
Author(s):  
Mohammad Hossein Karimi Darvanjooghi ◽  
Seyyed Mohammadreza Davoodi ◽  
Arzu Y Dursun ◽  
Mohammad Reza Ehsani ◽  
Iman Karimpour ◽  
...  

In this study, treated eggplant peel was used as an adsorbent to remove Pb2+ from aqueous solution. For this purpose batch adsorption experiments were performed for investigating the effect of contact time, pH, adsorbent dose, solute concentrations, and temperature. In order to assess adsorbent’s physical and chemical properties, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used. The results showed that the adsorption parameters for reaching maximum removal were found to be contact time of 110 min, adsorbent dose of 0.01 g/ml, initial lead(II) concentration of 70 ppm, pH of 4, and temperature of 25°C. Moreover, for the experiments carried out at pH > 4 the removal occurred by means of significant precipitation as well as adsorption. Furthermore, these results indicated that the adsorption followed pseudo-second-order kinetics model implying that during the adsorption process strong bond between lead(II) and chemical functional groups of adsorbent surface took place. The process was described by Langmuir model (R2 = 0.99; maximum adsorption capacity 88.33 mg/g). Also thermodynamics of adsorption was studied at various temperatures and the thermodynamic parameters including equilibrium constant (K), standard enthalpy change, standard entropy change, and standard free energy changes were obtained from experimental data.


Sign in / Sign up

Export Citation Format

Share Document