Marginal benefit based optimal water allocation: case of Teesta River, Bangladesh

Water Policy ◽  
2013 ◽  
Vol 15 (S1) ◽  
pp. 126-146 ◽  
Author(s):  
Md. Reaz Akter Mullick ◽  
Mukand S. Babel ◽  
Sylvain R. Perret

This article describes a hydrologic–economic optimization model for allocating available river flow between competing off- and in-stream demands, based on the marginal benefits (MBs) of sectoral water uses in a segment of the Teesta River in Bangladesh. Irrigation, capture fishery and navigation are the main direct water uses considered. The value of irrigation water was estimated using the residual imputation method. Losses in yield caused by lowered irrigation supply, resulting from reduced river flow, formed the basis for establishing the total and MB functions for off-stream river water use (irrigation). Total and MB functions for in-stream water use (capture fishery, navigation) were developed using field survey data of beneficiaries' income as a function of river flow. Analysis was enhanced by applying AQUARIUS, which allocates water between users to maximize consumer surplus based on MB functions. Model results show that in-stream uses could not compete with off-stream uses in the case of the Teesta, as substantial benefit was obtained from irrigation. Environmental flow to safeguard river health and in-stream use was considered to be a constraint in the optimization, which results in a sizeable reduction in irrigation benefit with a small increase in in-stream benefit. The necessary trade-offs between economic efficiency and environmental protection are depicted, providing insight into a justifiable water allocation strategy for the Teesta.

Author(s):  
Y. Jia ◽  
N. Wei ◽  
C. Hao ◽  
J. You ◽  
C. Niu ◽  
...  

Abstract. The water resources situation in the water-stressed Weihe River Basin, China, is more serious now than ever before because of a decrease in water resources and socio-economic development. A "Zero increase of socio-economic water use" in recent years gives people a wrong understanding and conceals the water crisis in the basin because the socio-economic water consumption has actually increased. Water use for the hydro-ecological system has been greatly reduced by a decrease in water resources and socio-economic water consumption increase. New concepts of hierarchical water uses for every sector and water consumption control are suggested for coordinating water uses of the socio-economy and ecosystems in the water-stressed basin. The traditional water resources allocation and regulation in China usually set up a priority sequence for water use sectors. Generally speaking, domestic water use has the highest priority and a highest guarantee rate, followed by industrial water use, irrigation and lastly ecological water use. The concept of hierarchical water use for every sector is to distinguish the water use of every sector into minimum part, appropriate part, and expected extra part with different guarantee rates, and the minimum parts of all sectors should be first guaranteed. By applying a water allocation model, we compared the water allocation results of the traditional approach and the newly suggested approach. Although further study is desired, the results are believed to be of an important referential value to sustainable development in the basin.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1756
Author(s):  
Jania Chilima ◽  
Jill Blakley ◽  
Harry Diaz ◽  
Lalita Bharadwaj

Conflicts around the multi-purpose water uses of Lake Diefenbaker (LD) in Saskatchewan, Canada need to be addressed to meet rapidly expanding water demands in the arid Canadian prairie region. This study explores these conflicts to advance collaborative planning as a means for improving the current water governance and management of this lake. Qualitative methodology that employed a wide participatory approach was used to collect focus group data from 92 individuals, who formed a community of water users. Results indicate that the community of water users is unified in wanting to maintain water quality and quantity, preserving the lake’s aesthetics, and reducing water source vulnerability. Results also show these users are faced with water resource conflicts resulting from lack of coherence of regulatory instruments in the current governance regime, and acceptable management procedures of both consumptive and contemporary water uses that are interlinked in seven areas of: irrigation, industrial, and recreational water uses; reservoir water level for flood control and hydroelectricity production; wastewater and lagoon management; fish farm operations; and regional water development projects. As a means of advancing collaborative planning, improvements in water allocation and regulatory instruments could be made to dissipate consumptive use conflicts and fill the under-regulation void that exists for contemporary water uses. Additionally, a comprehensive LD water use master plan, as a shared vision to improve participation in governance, could be developed to direct the water uses that have emerged over time. This study suggests that these three areas are practical starting conditions that would enable successful collaborative planning for the seven areas of water uses. Focusing on these three areas would ensure the current and future needs of the community of water users are met, while avoiding reactive ways of solving water problems in the LD region, especially as the water crisis in the Canadian Prairie region where LD is located is expected to intensify.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Gerald Norbert Souza da Silva ◽  
Márcia Maria Guedes Alcoforado de Moraes

The development of adequate modeling at the basin level to establish public policies has an important role in managing water resources. Hydro-economic models can measure the economic effects of structural and non-structural measures, land and water management, ecosystem services and development needs. Motivated by the need of improving water allocation using economic criteria, in this study, a Spatial Decision Support System (SDSS) with a hydro-economic optimization model (HEAL system) was developed and used for the identification and analysis of an optimal economic allocation of water resources in a case study: the sub-middle basin of the São Francisco River in Brazil. The developed SDSS (HEAL system) made the economically optimum allocation available to analyze water allocation conflicts and trade-offs. With the aim of providing a tool for integrated economic-hydrological modeling, not only for researchers but also for decision-makers and stakeholders, the HEAL system can support decision-making on the design of regulatory and economic management instruments in practice. The case study results showed, for example, that the marginal benefit function obtained for inter-basin water transfer, can contribute for supporting the design of water pricing and water transfer decisions, during periods of water scarcity, for the well-being in both basins.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2009
Author(s):  
Caroline Ednah Mwebaze ◽  
Jackson-Gilbert Mwanjalolo Majaliwa ◽  
Joshua Wanyama ◽  
Geoffrey Gabiri

Limited studies in East Africa and particularly in Uganda have been carried out to determine and map water use and demands. This study aimed at assessing the impact of management options on sustainable water allocation in environmentally sensitive catchments of Mubuku and Sebwe of Lake Edward-George basin in Western Uganda. We used hydro-meteorological data analysis techniques to quantify the available water. We applied Mike Hydro model to allocate water to the different ongoing developments in the catchment based on 2015 and 2040 water demand management scenarios. We used the Nile Basin Decision Support System to assess the sustainability of the different water management scenarios for sustainable water resources use. Reliability computation did not consider hydropower in this study. Results show that water available in 2015 was 60 MCM/YR and 365 MCM/YR for Sebwe and Mubuku, respectively and is projected to decrease by 15% and 11% by the year 2040 under climate scenario RCP8.5. We project water demand to rise by 64% for domestic, 44% for livestock, 400% for industry, 45% for hydro power and 66% for irrigation by 2040. Mubuku water demand is projected to increase from 5.2 MCM in 2015 to 10.7 MCM in 2040. Mubuku available water is projected to fall from 364.8 to 329.8 MCM per annum. Sebwe water demand is projected to increase from 9.7 MCM in 2015 to 22.2 MCM in 2040 and its available water is projected to fall from 60 to 52 MCM per annum by the year 2040 from 2015. Water managers ought to allocate water based on the reliable water allocation which prioritizes domestic and environmental water demands, allocates 90% of industrial demand, 70% of irrigation and 60% of livestock demand. We recommend institutionalizing this model to guide water allocation in the Mubuku-Sebwe sub catchments. Water users should employ more efficient water use techniques to achieve high reliability and sustainable water resources management.


Water Policy ◽  
2009 ◽  
Vol 11 (6) ◽  
pp. 731-741 ◽  
Author(s):  
D. A. Hughes ◽  
S. J. L. Mallory

The future management of water resources must take into account the levels of beneficial use that apply to various water use sectors. Competition for water during periods of low natural availability (droughts) suggests that users may not have access to their full supply requirement all of the time. This is particularly true of regions such as South Africa where natural water availability is highly variable and possibly will be even more so in the future. Socioeconomic evaluations of water allocation strategies should therefore account for the impacts of periodic restrictions (or shortfalls) in supply across different water use sectors. This paper presents an approach to designing water allocation operating rules that can account for restrictions and their impacts on individual water users, as well as on the community as a whole. The approach is illustrated using hypothetical data, as real data are not generally available. The paper maintains that it is important for socioeconomic evaluation methods to account for the possible effects of supply restrictions as well as the relative benefits of the normal supply volume. If they do not, they will not provide the information required by water resource engineers to design and operate water allocation systems.


2010 ◽  
Vol 7 (3) ◽  
pp. 3977-4021 ◽  
Author(s):  
S. Siebert ◽  
J. Burke ◽  
J. M. Faures ◽  
K. Frenken ◽  
J. Hoogeveen ◽  
...  

Abstract. Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr−1, or 43% of the total consumptive irrigation water use of 1 277 km3 yr−1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha), China (19 million ha) and the United States of America (17 million ha). Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.


2021 ◽  
Author(s):  
Jan Sandstad Næss ◽  
Otavio Cavalett ◽  
Francesco Cherubini

<p>Bioenergy plays a key role in scenarios limiting global warming below 2°C in 2100 relative to pre-industrial times. Land availability for bioenergy production is constrained due to competition with agriculture, nature conservation and other land uses. Utilizing recently abandoned cropland to produce bioenergy is a promising option for gradual bioenergy deployment with lower risks of potential trade-offs on food security and the environment. Up until now, the global extent of abandoned cropland has been unclear. Furthermore, there is a need to better map bioenergy potentials, taking into account site-specific conditions such as local climate, soil characteristics, agricultural management and water use.</p><p>Our study spatially quantify global bioenergy potentials from recently abandoned cropland under the land-energy-water nexus. We integrate a recently developed high-resolution satellite-derived land cover product (European Space Agency Climate Change Initiative Land Cover) with an agro-ecological crop yield model (Global Agro-Ecological Zones 3.0). Abandoned cropland is mapped as pixels transitioning from cropland to non-urban classes. We further identify candidate areas for nature conservation and areas with increased pressure on water resources. Based on climatic conditions, soil characteristics and agricultural management levels, we spatially model bioenergy yields and irrigation water use on abandoned cropland for three perennial grasses. We compute and analyze bioenergy potentials for 296 different variants of management factors and land and water use constraints. By assessing key energy, water and land indicators, we identify optimal bioenergy production strategies and site-specific trade-offs.</p><p>We found 83 million hectares of abandoned cropland between 1992 and 2015, equivalent of 5% of today’s cropland area. Bioenergy potentials range between 6-39 exajoules per year (EJ yr<sup>-1</sup>) (11-68% of today’s bioenergy demand), depending on agricultural management, land availability and irrigation water use. We further show and extensively discuss site-specific trade-offs between increased bioenergy production, land-use and water-use. Our high-end estimate (39 EJ yr<sup>-1</sup>) relies on complete irrigation and land availability. When acknowledging site-specific trade-offs on water resources and nature conservation, a potential of 20 EJ yr<sup>-1</sup> is achievable without production in biodiversity hotspots or irrigation in water scarce areas. This is equal to 8-23% of median projected bioenergy demand in 2050 for 1.5°C scenarios across different Shared Socio-economic Pathways. The associated land and water requirements are equal to 3% of current global cropland extent and 8% of today’s global agricultural water use, respectively.</p>


<em>Abstract.</em> —Freshwater tropical island environments support a variety of fishes that provide cultural, economic, and ecological services for humans but receive limited scientific, conservation, and public attention. Puerto Rico is a Caribbean tropical island that may serve as a model to illustrate the interactions between humans and natural resources in such complex ecosystems. The native freshwater fish assemblage of Puerto Rico is distinct from mainland assemblages in that the assemblage is not diverse, all species are diadromous, and they may be exploited at multiple life stages (e.g., postlarva, juvenile, adult). Primary large-scale drivers of recent water-use policy include economic growth, human population density, and urbanization, with climate change as an overarching influence. Watershed and riparian land use, water quality, river flow and instream physical habitat, river habitat connectivity, exotic species, and aquatic resource exploitation are important proximate factors affecting the ecosystem and fisheries. Research on ecological processes and components of the stream and river fish assemblages has expanded the knowledge base in the past decade with the goal of providing critical information for guiding the conservation and management of the lotic resource to optimize ecosystem function and services. The greatest challenge facing Caribbean island society is developing policies that balance the needs for human water use and associated activities with maintaining aquatic biodiversity, ecological integrity and services, and sustainable fisheries. Achieving this goal will require broad cooperation and sustained commitment among public officials, agency administrators, biologists, and the public toward effective resource management.


2019 ◽  
Vol 11 (19) ◽  
pp. 5428
Author(s):  
Quang Bao Le ◽  
Boubaker Dhehibi

Mechanized raised-bed technology (MRBT) is recognized as an important measure to achieve higher crop productivity and water-use efficiency in intensive irrigated systems. Development efforts on spreading this technology require adequate understanding of the qualities and drivers of farmers’ adoption of MRBT. Research in agricultural innovation adoption has identified the importance of the socio-ecological context (SEC) that influences the livelihood of farmers adopting new technologies. This study introduces an agricultural livelihood systems (ALS) typology-based approach for guiding concrete analytical steps and statistical methods in evaluating the effects of system SEC diversity in two Egyptian governorates. We objectively classify a population of sampled farming households into a limited number of ALS types and use inferential statistics for the whole sampled population and individual ALS types to discover adoption drivers. Values added by the ALS approach confirm the widespread role of common determinants of MRBT adoption across ALS types, household groups subject to the effects MRBT, and show new causal effects. The presented advanced approach and empirical findings will be useful for enhancing targeting and out-scaling of MRBT practices toward achieving sustainable agricultural water uses at scale.


Sign in / Sign up

Export Citation Format

Share Document