Use of Activated Oil Shale for the Removal of 2,4-Dichlorophenol from Aqueous Solutions

2005 ◽  
Vol 40 (2) ◽  
pp. 211-221
Author(s):  
Sameer Al-Asheh ◽  
Fawzi Banat ◽  
Asmahan Masad

Abstract Sorption of the phenolic compound 2,4-dichlorophenol (2,4-DCP) by pyrolyzed and different forms of treated residue of Jordanian oil shale was examined. Pyrolyzed oil shale was prepared using a fluidized bed reactor at 520ºC in the presence of nitrogen. Physical activation was carried out by treating the resultant pyrolyzed oil shale with CO2 at 830ºC, while chemical activation of oil shale was carried out using KOH and ZnCl2 as impregnating agents. Uptake of 2,4-DCP onto the different types of sorbents increased in the order ZnCl2-OS > Pyr-OS > CO2-OS, with minimal uptake when KOH-OS was used. The process was found to be exothermic in nature. An increase in the initial pH of the solution negatively influenced the sorption of 2,4-DCP. The isotherm experimental data fitted reasonably to the Langmuir, Freundlich and Redlich-Paterson models. According to kinetics studies, the rate of 2,4-DCP sorption onto ZnCl2-OS was faster than that by Pyr-OS. Three kinetics models, namely the Morris-Weber model, Lagergren model, and pseudo-second-order model (PSOM), were applied to represent the experimental results for both pyrolyzed and ZnCl2-oil shale sorbents.

2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Eka Purnawan ◽  
Abrar Muslim ◽  
Nasrullah Razali ◽  
Muhammad Zaki ◽  
Hesti Meilina ◽  
...  

This research proposed a method to produce activated carbon from rice husk by carbonation process, physical activation and chemical activation using NaOH. The performance of activated carbon was tested by batch experiments in which the adsorption system contained 1 g of rice husk activated carbon in 100 mL of artificial wastewater with initial concentration of Cu(II) ion being 148.26 mg/L, initial pH 6, at 27 oC and 1 atm to determine the efficiency of reducing Cu(II) ion over the contact time and presence of stirring on chemical activation. The results showed that the efficiency of reducing Cu(II) ion by rice husk activated carbon increased exponentially with increasing contact time with a maximum value of 74.33% at 90 minutes of contact time. The results also showed that stirring on chemical activation increased the efficiency of Cu(II) ion reduction by 14.94%. Adsorption kinetics studies showed that Cu(II) ion reduction followed the pseudo-second order adsorption equation with the adsorption capacity of 10.18 mg/g and  adsorption rate constant of 0.0013 g/mg.min for rice husk activated carbon without stirring in the chemical activation. Stirring in the chemical activation.increased the capacity and rate of adsorption constant to 12.07 mg/g and 0.0052 g/mg.min, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1437
Author(s):  
Chih Ming Ma ◽  
Bo-Yuan Yang ◽  
Gui-Bing Hong

Hydrogel beads based on the husk of agarwood fruit (HAF)/sodium alginate (SA), and based on the HAF/chitosan (CS) were developed for the removal of the dyes, crystal violet (CV) and reactive blue 4 (RB4), in aqueous solutions, respectively. The effects of the initial pH (2–10) of the dye solution, the adsorbent dosage (0.5–3.5 g/L), and contact time (0–540 min) were investigated in a batch system. The dynamic adsorption behavior of CV and RB4 can be represented well by the pseudo-second-order model and pseudo-first-order model, respectively. In addition, the adsorption isotherm data can be explained by the Langmuir isotherm model. Both hydrogel beads have acceptable adsorption selectivity and reusability for the study of selective adsorption and regeneration. Based on the effectiveness, selectivity, and reusability of these hydrogel beads, they can be treated as potential adsorbents for the removal of dyes in aqueous solutions.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 32 ◽  
Author(s):  
Changgil Son ◽  
Wonyeol An ◽  
Geonhee Lee ◽  
Inho Jeong ◽  
Yong-Gu Lee ◽  
...  

This study has evaluated the removal efficiencies of phosphate ions (PO43−) using pristine (TB) and chemical-activated tangerine peel biochars. The adsorption kinetics and isotherm presented that the enhanced physicochemical properties of TB surface through the chemical activation with CaCl2 (CTB) and FeCl3 (FTB) were helpful in the adsorption capacities of PO43− (equilibrium adsorption capacity: FTB (1.655 mg g−1) > CTB (0.354 mg g−1) > TB (0.104 mg g−1)). The adsorption kinetics results revealed that PO43− removal by TB, CTB, and FTB was well fitted with the pseudo-second-order model (R2 = 0.999) than the pseudo-first-order model (R2 ≥ 0.929). The adsorption isotherm models showed that the Freundlich equation was suitable for PO43− removal by TB (R2 = 0.975) and CTB (R2 = 0.955). In contrast, the Langmuir equation was proper for PO43− removal by FTB (R2 = 0.987). The PO43− removal efficiency of CTB and FTB decreased with the ionic strength increased due to the compression of the electrical double layer on the CTB and FTB surfaces. Besides, the PO43− adsorptions by TB, CTB, and FTB were spontaneous endothermic reactions. These findings demonstrated FTB was the most promising method for removing PO43− in waters.


2021 ◽  
Vol 920 (1) ◽  
pp. 012010
Author(s):  
F Fadzail ◽  
M Hasan ◽  
Z Mokhtar ◽  
N Ibrahim ◽  
O S An ◽  
...  

Abstract Removal of ketoprofen using Dillenia Indica peel activated carbon was investigated using batch adsorption at a laboratory scale. Chemical activation method with the aid of phosphoric acid was utilised in preparing the activated carbon. The adsorption experiments were evaluated using various factors which, are initial concentration, adsorbent dosage, and pH of ketoprofen. The optimum condition was determined to be at pH 6 and adsorbent dosage of 0.4 g with a most KTP uptake of 8.354 mg/g. The experimental findings showed that adsorption is favorable at lower pH. Isotherm studies were conducted and the data indicated that Langmuir isotherm was well fitted to the adsorption process and the pseudo-second-order model was more preferable in simulating the kinetic process. In essence, Dillenia Indica peel activated carbon was proven as being a favourable adsorbent for the uptake of ketoprofen in batch mode.


2011 ◽  
Vol 347-353 ◽  
pp. 281-284
Author(s):  
Peng Ge ◽  
Li Juan Wan ◽  
Ya Jing Xu

Among the investigated clays and minerals (kaolinite, natural zeolite, manual zeolite, bentonite, sepiolite, sepiolite amianthus, tremolite amianthus, vermiculite and baritite), the baritite clay was selected as the optimal adsorbent for aqueous Cr (VI). The Cr (VI) adsorption capacity on baritite clay reached as high as 39.01 mg∙g−1 at 20°C. Then the adsorption kinetics of Cr (VI) by the baritite clay were investigated in details. Results showed that the pseudo-second-order model was a suitable description for the adsorption kinetics and fitted well with the experimental data.


2014 ◽  
Vol 522-524 ◽  
pp. 552-559
Author(s):  
Min Zhang ◽  
Ben Zhi Ju ◽  
Shu Fen Zhang ◽  
Xue Zhang ◽  
Zhi Hua Cui

This paper presents a study on the adsorption of structurally different C.I. Acid Red 1(AR-1) and C.I. Acid Yellow 4(AY-4) from aqueous solution by a series water-insoluble crosslinked cationic starches with different degrees of substitution (DS) synthesized by a dry process. The adsorption quickly establish equilibrium within 15 min. The effective adsorption took place at the initial pH of 2-10 and pH of 2-8 for AR-1 and AY-4, respectively. The adsorption capacity of the two acid dyes increased with the increasing of DS of the crosslinked cationic starches. The adsorption capacity of AY-4 was almost two times higher than that of AR-1 under the present conditions. It was found that the adsorption kinetics of the two acid dyes on the crosslinked cationic starch was well described with the pseudo-second-order model (R2>0.99). Further, the Langmuir isotherm agreed well with the experimental data (R2>0.99). Besides, the thermodynamic parameters are shown.


2015 ◽  
Vol 1 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Dina Alexandra Martins ◽  
Manuel Simões ◽  
Luís Melo

Deliberate contamination with pesticides is a potential risk to water security, due to the availability of these contaminants and the fact that they do not need special expertise to handle or apply. Adsorption of the herbicide paraquat from an aqueous solution to suspended particles of kaolin and kaolin/hematite mixture was investigated by kinetic and equilibrium assays, taking into consideration several parameters such as initial pH, sorbent dosage and agitation speed. The results showed that the adsorption process is quite fast, reaching an 18% reduction in paraquat concentration in a very short period of time. The addition of hematite particles to kaolin suspension had no apparent effect on the maximum amount of paraquat adsorbed. Kinetic parameters were determined by fitting the pseudo-second order model to the experimental data (correlation coefficients close to 1). Isotherm studies indicate an inhibitory effect, promoted by hematite particles, that was not detected in the adsorption assays. Equilibrium data was best adjusted using the Langmuir model which yielded higher correlation coefficient values and smaller normalized standard deviations.


2018 ◽  
Vol 14 (2) ◽  
pp. 193-197 ◽  
Author(s):  
Mohd Sukri Hassan ◽  
Khairul Adli Nikman ◽  
Fisal Ahmad

Chemical activation process was applied to prepare a cocoa nib-based activated carbon using potassium carbonate (K2CO3). The performance of the activated carbon in removing Methylene Blue from aqueous solution was investigated by batch adsorption studies. The adsorptive properties were studied in terms of initial concentration (C0: 100-300 mg/L) and contact time effects. The experimental isotherm data fitted well the Langmuir and Temkin models. The adsorption kinetic followed the pseudo-second-order model and Boyd model explained the mechanism of adsorption. The results indicate that the chemically produced activated cocoa nib carbon has significant potential to be used as an adsorbent material for adsorption of Methylene Blue from aqueous solution.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Zaniah Ishak ◽  
Sa’diah Salim ◽  
Dilip Kumar

One of the most environmentally friendly methods to treat wastewater, especially synthetic dyes, is the production of activated carbon from agricultural waste. Tamarind seeds were transformed from negative-value waste into activated carbon in order to study the removal of synthetic dyes. The particular agro waste was soaked in ZnCl2 for chemical activation to increase its surface area and enhance its porosity. Physical activation of tamarind seeds was done by the carbonization process by burning at a temperature of 300 °C for 1 hour and cooling for 24 hours before washing with HCL to activate a pore surface for the tamarind seeds' carbon. The effects of parameters related to the adsorption of the dyes by tamarind seed activated carbon, such as contact time, initial concentration, absorbance dosage, and pH, were studied. The experimental data found that adsorption on both synthetic dyes exhibited a Langmuir isotherm in which the correlation value, R2, was 0.9227 (methylene blue) and 0.6117 (Reactive black 5). Meanwhile, the rate of adsorption for methylene blue (MB) and Reactive black 5 (RB5) by tamarind seed activated carbon was found to be well fitted in a pseudo-second-order model. More research is needed to meet the standard effluent of dyeing wastewater from the industrial sector.


2012 ◽  
Vol 30 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Fadela Nemchi ◽  
Benaouda Bestani ◽  
Nouredine Benderdouche ◽  
Mostefa Belhakem ◽  
Louis Charles de Minorval

Adsorbents prepared from seawater algae, viz. green Ulva lactuca (PGA) and brown Systoceira stricta (PBA), by chemical activation were successfully tested for the removal of Supranol Yellow 4GL dye from aqueous solutions. Impregnation in 20% phosphoric acid for 2 h at 170 °C and subsequent air activation at 600 °C for 3 h significantly enhanced the adsorption capacities of both algae relative to their inactivated states. Parameters influencing the adsorption capacity such as contact time, adsorbent dosage, pH and temperature were studied. Similar experiments were carried out with commercially available Merck activated carbon (MAC) for comparative purposes. Adsorption efficiencies were measured at a pH 2 and dosages of 8 g/ℓ and 12 g/ℓ for PGA and PBA, respectively. Batch adsorption experiments resulted in maximum adsorption capacities determined from Langmuir models of up to 263, 93 and 84 mg/g for PGA, PBA and MAC, respectively. BET, FT-IR analyses, iodine number and Methylene Blue index determination were also performed to characterize the prepared adsorbents. The adsorption kinetics were found to comply with the pseudo-second-order model with intra-particle diffusion being the rate-determining step. Thermodynamic analysis confirmed that the adsorption reaction was spontaneous and endothermic. These studies indicate that these seawater algae could be used as low-cost alternatives for the removal of dyes.


Sign in / Sign up

Export Citation Format

Share Document