scholarly journals Water-tourism nexus: impact of the water footprint of inbound tourists to China

Author(s):  
Yu Zhang ◽  
Qing Tian

Abstract The water footprint is a new concept used to understand the water resources uses; however, few studies have applied it to the service industry and the impact analysis are not abundant. This study explored how water footprint of tourism influenced water resources based on inbound tourists to China from 2001 to 2018. The total water footprint of inbound tourists (ITWF) was 7273.15*106 m3, and showed an upward trend. The spatial pattern was agglomerated, being mainly concentrated in North China, East China, and South China. The standard deviation ellipse showed that the horizontal axis was first east, and then west. According to the background water footprint, the ‘contribution’ of ITWF to the background water surplus differed in each province. According to the background water stress, the impact roughly separated into large, medium, and small using overlay analysis. Based on ITWF and water stress levels, the 31 administrative regions of mainland China were separated into four types and put forward suggestions: double-high pressure type, cautious development type, double-low potential type and optimised development type. This study provided a theoretical reference for governments, and is conducive to promoting the coordinated and sustainable development of tourism and water resources.

2018 ◽  
Vol 10 (10) ◽  
pp. 3556 ◽  
Author(s):  
Gang Liu ◽  
Lu Shi ◽  
Kevin Li

This paper develops a lexicographic optimization model to allocate agricultural and non-agricultural water footprints by using the land area as the influencing factor. An index known as the water-footprint-land density (WFLD) index is then put forward to assess the impact and equity of the resulting allocation scheme. Subsequently, the proposed model is applied to a case study allocating water resources for the 11 provinces and municipalities in the Yangtze River Economic Belt (YREB). The objective is to achieve equitable spatial allocation of water resources from a water footprint perspective. Based on the statistical data in 2013, this approach starts with a proper accounting for water footprints in the 11 YREB provinces. We then determined an optimal allocation of water footprints by using the proposed lexicographic optimization approach from a land area angle. Lastly, we analyzed how different types of land uses contribute to allocation equity and we discuss policy changes to implement the optimal allocation schemes in the YREB. Analytical results show that: (1) the optimized agricultural and non-agricultural water footprints decrease from the current levels for each province across the YREB, but this decrease shows a heterogeneous pattern; (2) the WFLD of 11 YREB provinces all decline after optimization with the largest decline in Shanghai and the smallest decline in Sichuan; and (3) the impact of agricultural land on the allocation of agricultural water footprints is mainly reflected in the land use structure of three land types including arable land, forest land, and grassland. The different land use structures in the upstream, midstream, and downstream regions lead to the spatial heterogeneity of the optimized agricultural water footprints in the three YREB segments; (4) In addition to the non-agricultural land area, different regional industrial structures are the main reason for the spatial heterogeneity of the optimized non-agricultural water footprints. Our water-footprint-based optimal water resources allocation scheme helps alleviate the water resources shortage pressure and achieve coordinated and balanced development in the YREB.


2018 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively managing agricultural water resources. The water footprint is a new index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the region-scale water footprint of crop production based on hydrological processes. This method analyzes the water-use process during the growth of crops, which includes irrigation, precipitation, underground water, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprints of wheat, corn and sunflower were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprints of wheat, sunflower and corn were 1380–2888 m3/t, 942–1774 m3/t, and 2095–4855 m3/t, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprint for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further from the irrigating gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


2020 ◽  
Vol 12 (23) ◽  
pp. 3913
Author(s):  
Claudia Notarnicola

The quantification of snow cover changes and of the related water resources in mountain areas has a key role for understanding the impact on several sectors such as ecosystem services, tourism and energy production. By using NASA-Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2000 to 2018, this study analyzes changes in snow cover in the High Mountain Asia region and compares them with global mountain areas. Globally, snow cover extent and duration are declining with significant trends in around 78% of mountain areas, and the High Mountain Asia region follows similar trends in around 86% of the areas. As an example, Shaluli Shan area in China shows significant negative trends for both snow cover extent and duration, with −11.4% (confidence interval: −17.7%, −5.5%) and −47.3 days (confidence interval: −70.4 days, −24.4 days) at elevations >5500 m a.s.l. respectively. In spring, an earlier snowmelt of −13.5 days (confidence interval: −24.3 days, −2.0 days) in 4000–5500 m a.s.l. is detected. On the other side, Tien Shan area shows an earlier snow onset of −28.8 days (confidence interval: −44.3 days, −8.2 days) between 2500 and 4000 m a.s.l., governed by decreasing temperature and increasing snowfall. In the current analysis, the Tibetan Plateau shows no significant changes. Regarding water resources, by using Gravity Recovery and Climate Experiment (GRACE) data it was found that around 50% of areas in the High Mountain Asia region and 30% at global level are suffering from significant negative temporal trends of total water storage (including groundwater, soil moisture, surface water, snow, and ice) in the period 2002–2015. In the High Mountain Asia region, this negative trend involves around 54% of the areas during spring period, while at a global level this percentage lies between 25% and 30% for all seasons. Positive trends for water storage are detected in a maximum 10% of the areas in High Mountain Asia region and in around 20% of the areas at global level. Overall snow mass changes determine a significant contribution to the total water storage changes up to 30% of the areas in winter and spring time over 2002–2015.


2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


2018 ◽  
Vol 22 (10) ◽  
pp. 5111-5123 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively manage agricultural water resources. The water footprint is an improved index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the regional-scale water footprint of crop production based on hydrological processes, and the water footprint is quantified in terms of blue and green water. This method analyses the water-use process during the growth of crops, which includes irrigation, precipitation, groundwater, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprint of wheat, corn and sunflowers were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprint of wheat, corn and sunflowers were 1380–2888, 942–1774 and 2095–4855 m3 t−1, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprints for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further away from the irrigation gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


2021 ◽  
Vol 10 (6) ◽  
pp. e26610615777
Author(s):  
Ana Luiza Grateki Barbosa ◽  
Daniel Brasil Ferreira Pinto ◽  
Rafael Alvarenga Almeida

Currently, the management of water resources has gained greater visibility and has become indispensable, with the need for different methodologies which consider all water used and incorporated in the processes and products. In this way, the water footprint concept has been introduced to calculate the appropriation of fresh water on the part of the humankind. Thus, the objective of this work was to determine the water footprint in some sectors of family farming in the municipality of Teófilo Otoni – MG, analyzing the agricultural production of crops cultivated exclusively by the sector in 2017 in Teófilo Otoni. The cultivation of pumpkin, banana, chayote, beans, cassava, Maize, peppers, okra, cabbage, and tangerine were studied. Thus, the total water footprint for the year 2017 was 13,996,735.05 m3.t-1, in which the green water footprint represents 86%, the blue water footprint represents 12.5% and the gray water footprint equals 1.5%. The family farming sector of Teófilo Otoni demands an average of 196.73 liters for a production of R$ 1.00.


2021 ◽  
Vol 892 (1) ◽  
pp. 012106
Author(s):  
D W Pujiriyani ◽  
H Wulansari ◽  
B Suyudi

Abstract Dams are agricultural infrastructure that has very important role in supporting food security. Dams constructions indirectly show a change in resources from land resources (terrestrial) to water resources (aquatic). This study aims to analyze the impact of land acquisitions as a consequence of accelerating agricultural infrastructure development policy in East Java Province. This research was conducted using a multiple case study approach. Data were collected qualitatively through documents study, observation, and in-depth interview. There are three cases of land acquisition for dam construction comparing in this study: Semanthok Dam in Nganjuk District, Bagong Dam in Trenggalek District, and Bendo Dam in Ponorogo District. The result shows that land acquisition for dam construction was not immediately responded well. Conflicts usually begin from the value of compensation that is not in accordance to the community expectation. The land acquisition process for the dams has not included a livelihood plan for the people who are relocated from their village of origin. In fact, the dam construction necessitates a shift from the affected communities who originally used land resources eventually turned into water resources due to the dam constructions. A comprehensive impact analysis mapping has not been found covering: the community upstream dam, the community around dam and the community downstream of the dam.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2230
Author(s):  
Mariam Al-Bahouh ◽  
Vern Osborne ◽  
Tom Wright ◽  
Mike Dixon ◽  
Andrew VanderZaag ◽  
...  

The blue water footprint (WF) is an indicator of freshwater required to produce a given end product. Determining the blue WF for milk production, the seasonal water use and the impact of water conservation are important sustainability considerations for the dairy industry in Ontario (Canada). In this study, a water footprint network (WFN) method was used to calculate the seasonal blue WF’s from in-barn water use data and the fat–protein-corrected milk (FPCM) production. Various water conservation options were estimated using the AgriSuite software. Results showed that the total water use (L of water·cow−1·d−1) and the average blue WF (L of water·kg−1 of FPCM) were 246.3 ± 6.8 L·cow−1·d−1 and 7.4 ± 0.2 L·kg−1, respectively. The total water use and the blue WF could be reduced to 182.7 ± 5.1 L·cow−1·d−1 (25.8% reduction) and 5.8 ± 0.1 L·kg−1 (21.6% reduction), respectively, through adaptive water conservation measures as the reuse of the plate cooler and milk house water. For example, conservation practices could reduce the milk house wash water use from 74.3 ± 8.8 L·cow−1·d−1 to 16.6 ± 0.1 L·cow−1·d−1 (77.7% overall reduction).


2011 ◽  
Vol 8 (2) ◽  
pp. 3543-3570 ◽  
Author(s):  
Z. Y. Zhang ◽  
H. Yang ◽  
M. J. Shi ◽  
A. J. B. Zehnder ◽  
K. C. Abbaspour

Abstract. This study provides an insight into the impact of China's international trade of goods and services on its water resources and uses. Virtual water flows associated with China's international trade are quantified in an input-output framework. The analysis is scaled down to the sectoral and provincial levels to trace the origins and destinations of virtual water flows associated with the international trade. The results reveal that China is a net virtual water exporter of 4.7 × 1010 m3 year−1, accounting for 2.1% of its total water resources and 8.9% of the total water use. Water scarce regions tend to have higher percentages of virtual water export relative to their water resources and water uses. In the water scarce Huang-Huai-Hai region, the net virtual water export accounts for 7.9% of the region's water resources and 11.2% of its water uses. For individual sectors, major net virtual water exporters are those where agriculture provides raw materials in the initial process of the production chain and/or pollution intensity is high. The results suggest that China's economic gains from being a world "manufacture factory" have come at a high cost to its water resources and through pollution to its environment.


Author(s):  
Heman Das Lohano ◽  
Fateh Muhammad Marri

Water resources in Sindh province of Pakistan are under significant pressure due to increasing and conflicting water demand from municipalities for domestic users, agriculture and industries, and requirements of environmental flows. Population growth and climate change are likely to pose serious challenges to households and economic sectors that depend on water. This study estimates the present water demand from municipalities, agriculture and industries, and its future projections by the year 2050 in Sindh. The study also evaluates the impact of climate change on sectoral water demand and assesses the water requirements for the environmental flows. The results show that presently the total water demand for these sectors in Sindh is 44.06 Million Acre Feet (MAF). Agriculture is the largest consumer of water, accounting for 95.24 percent of the total water demand. Municipal water demand accounts for 2.61 percent while industrial water demand accounts for 1.88 percent. The demand for water in these sectors is expected to rise by 10 percent from 2018 to 2050. Moreover, depending on climate change scenario, the total water demand in these three sectors is likely to rise by 16 to 25 percent from 2018 to 2050. In additions, water requirements for the environmental flows have been indicated as 10 MAF in the National Water Accord of 1991. The findings of this study call for policy measures and strategies for management of water resources in Sindh.


Sign in / Sign up

Export Citation Format

Share Document