Bacteriophages and bacteria as indicators of enteric viruses in oysters and their harvest waters

1998 ◽  
Vol 38 (12) ◽  
pp. 37-44 ◽  
Author(s):  
H. Chung ◽  
L.-A. Jaykus ◽  
G. Lovelace ◽  
M. D. Sobsey

Reliable indicators are needed to detect enteric virus contamination of bivalve molluscan shellfish and their harvest waters. Concentrations of male-specific (F+) coliphages, Bacteroides fragilis phages, Salmonella phages and several indicator bacteria in wastewater, estuarine receiving water and its oysters were examined for their ability to predict the presence and levels of faecal contamination and enteric viruses in oysters. Enteric viruses in oysters were detected by cell culture and RT-PCR methods. F+ coliphages, Salmonella phages, B fragilis phages and faecal indicator bacteria (faecal coliforms, E coli, enterococci and Clostridium perfringens) were generally positively associated and were highest in raw sewage and progressively lower in sewage effluent and in receiving waters at increasing distance from the wastewater discharge. Indicator levels in oysters were highest for F+ coliphages and C perfringens. One F+ RNA coliphage serotype (Group II) predominated in the wastewater, receiving water and oysters. Human enteric viruses were detected in 17/31 oyster samples. The levels of most indicators in oysters and water were higher when oysters were enteric virus-positive and lower when oysters were enteric virus-negative. F+ coliphages and C perfringens were the only indicators significantly associated with the presence of enteric viruses in oysters. F+ coliphages and their serotypes are promising indicators of human enteric virus contamination in oysters and their harvest waters.

2002 ◽  
Vol 2 (3) ◽  
pp. 17-22
Author(s):  
A.P. Wyn-Jones ◽  
J. Watkins ◽  
C. Francis ◽  
M. Laverick ◽  
J. Sellwood

Two rural spring drinking water supplies were studied for their enteric virus levels. In one, serving about 30 dwellings, the water was chlorinated before distribution; in the other, which served a dairy and six dwellings the water was not treated. Samples of treated (40 l) and untreated (20 l) water were taken under normal and heavy rainfall conditions over a six weeks period and concentrated by adsorption/elution and organic flocculation. Infectious enterovirus in concentrates was detected in liquid culture and enumerated by plaque assay, both in BGM cells, and concentrates were also analysed by RT-PCR. Viruses were found in both raw water supplies. Rural supplies need to be analysed for viruses as well as bacterial and protozoan pathogens if the full microbial hazard is to be determined.


1982 ◽  
Vol 89 (1) ◽  
pp. 69-78 ◽  
Author(s):  
R. C. Wright

SUMMARYThe levels of faecal coliforms (FC), indole-positive FC (presumptiveEscherichia coli), faecal streptococci (FS),Streptococcus faecalisandClostridium perfringensin the natural water sources used by 29 rural settlements in Sierra Leone were investigated. Levels of the same indicators in human faeces were also investigated. The incidence ofSalmonellaspp. in both habitats and the temperature, pH and conductivity of water sources were also recorded. All water sources were contaminated with the indicator bacteria, mean numbers of which occurred in the relationship FC > presumptiveE. coli≏ FS ≏C. perfringens>S. faecalis.FC were also predominant in human faeces, the relationship of means being FC ≏ presumptiveE. coli> FS >S. faecalis>C. perfringens.The need for confirmation of FC counts obtained from water sources was indicated by the large number of positive tubes produced in the FC multiple-tube dilution test from some samples which could not be confirmed as presumptiveE. coli. Salmonellaspp. were isolated from 13 water sources and 6% of faecal samples. Mean water temperature was high (26·2 °C), pH low (5·04) and conductivity low (34μS cm−1). PresumptiveE. coliwas considered the most appropriate indicator of faecal pollution of the types of water investigated.


2003 ◽  
Vol 69 (12) ◽  
pp. 7130-7136 ◽  
Author(s):  
Y. Carol Shieh ◽  
Ralph S. Baric ◽  
Jacquelina W. Woods ◽  
Kevin R. Calci

ABSTRACT An 18-month survey was conducted to examine the prevalence of enteric viruses and their relationship to indicators in environmentally polluted shellfish. Groups of oysters, one group per 4 weeks, were relocated to a coastal water area in the Gulf of Mexico that is impacted by municipal sewage and were analyzed for enteroviruses, Norwalk-like viruses (NLV), and indicator microorganisms (fecal coliform, Escherichia coli, and male-specific coliphages). The levels of indicator microorganisms were consistent with the expected continuous pollution of the area. Fourteen of the 18 oyster samples were found by reverse transcription (RT)-PCR to harbor NLV and/or enterovirus sequences. Of the four virus-negative oysters, three had exposure to water temperatures of >29°C. Concomitant with these findings, two of these four oysters also accumulated the lowest levels of coliphages. PCR primers targeting pan-enteroviruses and the NLV 95/96-US common subset were utilized; NLV sequences were detected more frequently than those of enteroviruses. Within the 12-month sampling period, NLV and enterovirus sequences were detected in 58 and 42%, respectively, of the oysters (67% of the oysters tested were positive for at least one virus) from a prohibited shellfish-growing area approximately 30 m away from a sewage discharge site. Eight (4.6%) of the 175 NLV capsid nucleotide sequences were heterogeneous among the clones derived from naturally polluted oysters. Overall, enteric viral sequences were found in the contaminated oysters throughout all seasons except hot summer, with a higher prevalence of NLV than enterovirus. Although a high percentage of the oysters harbored enteric viruses, the virus levels were usually less than or equal to 2 logs of RT-PCR-detectable units per gram of oyster meat.


2021 ◽  
Author(s):  
Adeeba H Dhalech ◽  
Tara D Fuller ◽  
Christopher M Robinson

Enteric viruses infect the mammalian gastrointestinal tract and lead to significant morbidity and mortality worldwide. Data indicate that enteric viruses can utilize intestinal bacteria to promote viral replication and pathogenesis. However, the precise interactions between enteric viruses and bacteria are unknown. Here we examined the interaction between bacteria and Coxsackievirus B3, an enteric virus from the picornavirus family. We found that bacteria enhance the infectivity of Coxsackievirus B3 (CVB3) in vitro. Notably, specific bacteria are required as gram-negative Salmonella enterica, but not Escherichia coli, enhanced CVB3 infectivity and stability. Investigating the cell wall components of both S. enterica and E. coli revealed that structures in the O-antigen or core of lipopolysaccharide, a major component of the gram-negative bacterial cell wall, were required for S. enterica to enhance CVB3. To determine if these requirements were necessary for similar enteric viruses, we investigated if S. enterica and E. coli enhanced infectivity of poliovirus, another enteric virus in the picornavirus family. We found that, in contrast to CVB3, these bacteria enhanced the infectivity of poliovirus in vitro. Overall, these data indicate that distinct bacteria enhance CVB3 infectivity and stability, and specific enteric viruses may have differing requirements for their interactions with specific bacterial species.


2011 ◽  
Vol 9 (3) ◽  
pp. 544-555 ◽  
Author(s):  
Ji Hee Jung ◽  
Chang Hoon Yoo ◽  
Eung Seo Koo ◽  
Hak Min Kim ◽  
Youjin Na ◽  
...  

A total of 39 water samples from 23 different groundwater wells in Korea were collected and analyzed in order to monitor the occurrence of norovirus (NoV) and other indicator microbes as the first part of a national survey of groundwater. More than 500 L of untreated groundwater were filtered through 1MDS filters. Following elution and concentration by organic flocculation, PCR and sequence analysis were employed to detect and identify NoV, enterovirus, rotavirus, hepatitis A virus and adenovirus (Adv). Somatic and F-specific phages, heterotrophic bacteria, total coliforms and Escherichia coli were also analyzed to infer possible fecal contamination. NoVs were detected in 18% of the 39 samples. Five out of seven NoV-positive samples (71%) were identified as GI while the other two (29%) were GII. Enteroviruses and Advs were detected in two and three samples, respectively. Rotavirus and hepatitis A virus were not detected. Total coliforms, E. coli and coliphages were detected in 49, 15 and 13% of the samples, respectively, but did not appear to be suitable indicators of enteric virus contamination in groundwater. These results suggest that additional treatment may be needed for a significant number of groundwaters prior to use as drinking water.


2015 ◽  
Vol 81 (18) ◽  
pp. 6436-6445 ◽  
Author(s):  
Naim Montazeri ◽  
Dorothee Goettert ◽  
Eric C. Achberger ◽  
Crystal N. Johnson ◽  
Witoon Prinyawiwatkul ◽  
...  

ABSTRACTPathogenic enteric viruses are responsible for a wide range of infections in humans, with diverse symptoms. Raw and partially treated wastewaters are major sources of environmental contamination with enteric viruses. We monitored a municipal secondary wastewater treatment plant (New Orleans, LA) on a monthly basis for norovirus (NoV) GI and GII and enterovirus serotypes using multiplex reverse transcription-quantitative PCR (RT-qPCR) and microbial indicators of fecal contamination using standard plating methods. Densities of indicator bacteria (enterococci, fecal coliforms, andEscherichia coli) did not show monthly or seasonal patterns. Norovirus GII was more abundant than GI and, along with enterovirus serotypes, increased in influent during fall and spring. The highest NoV GI density in influent was in the fall, reaching an average of 4.0 log10genomic copies/100 ml. Norovirus GI removal (0.95 log10) was lower than that for GII, enterovirus serotypes, and male-specific coliphages (1.48 log10) or for indicator bacteria (4.36 log10), suggesting higher resistance of viruses to treatment. Male-specific coliphages correlated with NoV GII densities in influent and effluent (r= 0.48 and 0.76, respectively) and monthly removal, indicating that male-specific coliphages can be more reliable than indicator bacteria to monitor norovirus GII load and microbial removal. Dominant norovirus genotypes were classified into three GI genotypes (GI.1, GI.3, and GI.4) and four GII genotypes (GII.3, GII.4, GII.13, and GII.21), dominated by GI.1 and GII.4 strains. Some of the seasonal and temporal patterns we observed in the pathogenic enteric viruses were different from those of epidemiological observations.


2008 ◽  
Vol 54 (6) ◽  
pp. 472-478 ◽  
Author(s):  
Annie Locas ◽  
Christine Barthe ◽  
Aaron B. Margolin ◽  
Pierre Payment

To verify previous conclusions on the use of bacterial indicators suggested in regulations and to investigate virological quality of groundwater, a 1-year study was undertaken on groundwater used as a source of drinking water in 3 provinces in Canada. Raw water from 25 municipal wells was sampled during a 1-year period for a total of 167 samples. Twenty-three sites were selected on the basis of their excellent historical bacteriological water quality data, and 2 sites with known bacteriological contamination were selected as positive controls. Water samples were analyzed for general water quality indicators (aerobic endospores, total coliforms), fecal indicators ( Escherichia coli , enterococci, somatic and male-specific coliphages), total culturable human enteric viruses (determined by cell culture and immunoperoxidase), noroviruses (analyzed by reverse-transcriptase – polymerase chain reaction (RT–PCR)), adenovirus types 40 and 41 (analyzed by integrated cell culture (ICC) – PCR), and enteroviruses and reoviruses types 1, 2, and 3 (analyzed by ICC–RT–PCR). General water quality indicators were found very occasionally at the clean sites but were frequently present at the 2 contaminated sites. Only one of 129 samples from the 23 clean sites was positive for enterococci. These results confirm the value of raw water quality historical data to detect source water contamination affecting wells that are vulnerable. Samples from the 2 contaminated sites confirmed the frequent presence of fecal indicators: E. coli was found in 20/38 samples and enterococci in 12/38 samples. Human enteric viruses were not detected by cell culture on MA-104 cells nor by immunoperoxidase detection in any sample from the clean sites but were found at one contaminated site. By ICC–RT–PCR and ICC–PCR, viruses were found by cytopathic effect in one sample from a clean site and they were found in 3 samples from contaminated sites. The viruses were not detected by the molecular methods but were confirmed as picornaviruses by electron microscopy. Noroviruses were not detected in any samples. The results obtained reinforce the value of frequent sampling of raw water using simple parameters: sampling for total coliforms and E. coli remains the best approach to detect contamination of source water by fecal pollutants and accompanying pathogens. The absence of total coliforms at a site appears to be a good indication of the absence of human enteric viruses.


2012 ◽  
Vol 75 (8) ◽  
pp. 1492-1500 ◽  
Author(s):  
T. H. JONES ◽  
M. W. JOHNS

Hepatitis E virus (HEV) is common in pigs, and some swine HEV strains are closely related to human strains. The zoonotic transmission of HEV is now well established. HEV can be detected by molecular techniques, but the significance of the presence of viral nucleic acid is questionable when foods are subjected to virus inactivation treatments. F-RNA coliphages are attractive candidates as indicators for enteric viruses because they are similar in size and survival characteristics and can be rapidly cultured. Information on the contamination of hog carcasses with enteric or hepatic viruses during slaughter is lacking. The objective of this study was to compare the incidence and levels of contamination of hog carcasses with F-RNA coliphages, HEV, total aerobic bacteria, coliforms, and Escherichia coli at different stages of the dressing process. Hog carcasses entering the commercial slaughter facility are heavily contaminated with F-RNA coliphages and HEV. Subsequent processes such as scalding, singing, and pasteurization can reduce the incidence and levels of F-RNA coliphages and HEV substantially to almost undetectable levels. Large discrepancies between the amount of viral nucleic acid and infectious F-RNA coliphage particles, both at high levels and low levels of contamination, were observed. The prevalence and levels of viable F-RNA coliphages were lower than those of total aerobic bacteria, coliforms, and E. coli in the anal area and on random sites before pasteurization. At a research abattoir, there was no overall mean reduction of viable F-RNA coliphages recovered from random sites before pasteurization and after washing, whereas overall mean reductions of 1.2, 2.6, and 2.9 log CFU for total aerobic bacteria, coliforms, and E. coli, respectively, were obtained. These findings suggest that bacteria such as coliforms and E. coli may not be suitable as indicators for enteric viruses in a meat processing environment.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1384
Author(s):  
Giusi Macaluso ◽  
Annalisa Guercio ◽  
Francesca Gucciardi ◽  
Santina Di Bella ◽  
Giuseppina La Rosa ◽  
...  

Contamination of bivalve mollusks with human pathogenic viruses represents a recognized food safety risk. Thus, monitoring programs for shellfish quality along the entire food chain could help to finally preserve the health of consumers. The aim of the present study was to provide up-to-date data on the prevalence of enteric virus contamination along the shellfish production and distribution chain in Sicily. To this end, 162 batches of mollusks were collected between 2017 and 2019 from harvesting areas, depuration and dispatch centers (n = 63), restaurants (n = 6) and retail stores (n = 93) distributed all over the island. Samples were processed according to ISO 15216 standard method, and the presence of genogroup GI and GII norovirus (NoV), hepatitis A and E viruses (HAV, HEV), rotavirus and adenovirus was investigated by real-time reverse transcription polymerase chain reaction (real-time-RT PCR), nested (RT)-PCR and molecular genotyping. Our findings show that 5.56% of samples were contaminated with at least one NoV, HAV and/or HEV. Contaminated shellfish were sampled at production sites and retail stores and their origin was traced back to Spain and several municipalities in Italy. In conclusion, our study highlights the need to implement routine monitoring programs along the whole food chain as an effective measure to prevent foodborne transmission of enteric viruses.


Author(s):  
Wen ◽  
Zheng ◽  
Yuan ◽  
Zhu ◽  
Kuang ◽  
...  

Currently, water contaminated with fecal matter poses a threat to public health and safety. Thus, enteric viruses are tested for as a part of water quality indicator assays; however, enteric viruses have not yet been listed in the criteria. Effective and sensitive methods for detecting enteric viruses are required in order to increase water safety. This study utilized enteric viruses as possible alternative indicators of water quality to examine fresh water in six sites in Poyang Lake, Nanchang, Jiangxi Province. The presence of norovirus geno-groups II (NoV GII), enteroviruses (EoV) and adenoviruses (AdV) were determined using Tianjin’s protocol and Hawaii’s protocol during a six month period from 2016–2017. The former used an electropositive material method for viral concentration and Taqman-q reverse transcription polymerase chain reaction (RT-PCR) to detect enteric viruses; while the latter used a filtration-based method for viral concentration and RT-PCR for enteric virus detection. There is a statistically significant difference between Tianjin’s method and Hawaii’s method for the detection of enteric viruses, such as NoV GII, EoV, and AdV (n = 36, p < 0.001). The enteric viruses showed no significant positive correlation with bacteria indicators (n = 36, p > 0.05). These data stress the need for additional indicators when establishing water quality systems, and the possibility of using enteric viruses as water quality indicators. It has become essential to improve shortcomings in order to search for an adequate method to detect enteric viruses in water and to implement such method in water quality monitoring.


Sign in / Sign up

Export Citation Format

Share Document