Biodegradation of RDX-contaminated wastes in a nitrogen-deficient environment

1998 ◽  
Vol 38 (4-5) ◽  
pp. 219-224 ◽  
Author(s):  
Z. Ronen ◽  
A. Brenner ◽  
A. Abeliovich

A feasible biological treatment process for RDX-contaminated wastes was demonstrated in a bench-scale system, using real wastewater of a munitions factory. The wastewater mixture tested included the nitramine RDX together with high levels of nitrate and various organic solvents such as cyclohexanone and acetone. The purpose of the study was to remove both RDX and nitrate in order to prevent groundwater contamination. A two-stage reactor system including an anoxic stage followed by an aerobic one was tested. The anoxic stage was aimed at removing nitrate by denitrification, using available carbon sources present in the waste mixture. Additional supply of carbon source (acetone) was required to support complete removal of nitrate. Further removal of residual organic was achieved in the aerobic stage together with total mineralization of RDX. Complete removal of nitrate in the anoxic stage was found to be crucial to RDX mineralization in the aerobic stage, since RDX was used solely as a nitrogen source. Additional carbon source (cyclohexanone) was also required in the aerobic stage to assure complete removal of RDX. The treatment scheme tested may be a cost-effective alternative to physico-chemical treatments such as carbon adsorption and UV destruction, commonly applied for explosives-contaminated wastes.

2013 ◽  
Vol 316-317 ◽  
pp. 625-628
Author(s):  
Jian Mei Zhang ◽  
Chuan Ping Feng ◽  
Si Qi Hong ◽  
Hui Ling Hao

The method of the heterotrophic denitrification remediation of nitrate-polluted groundwater involves the study of organic carbon sources as electron donor. The aim of the present study was to evaluate wheat straw for its ability to enhance denitrification in column experiments. The inlet concentration was 50.0 mgNO3--N/L and the column operated at the flow rate of 2.0 ml/min. The result showed that in the presence of wheat straw, highly reducing conditions were generated and complete removal of nitrate (>95%) was achieved, with less accumulation of nitrite. Consequently, wheat straw is an attractive carbon source for groundwater denitrification.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Cortney R. Halsey ◽  
Shulei Lei ◽  
Jacqueline K. Wax ◽  
Mckenzie K. Lehman ◽  
Austin S. Nuxoll ◽  
...  

ABSTRACT Staphylococcus aureus must rapidly adapt to a variety of carbon and nitrogen sources during invasion of a host. Within a staphylococcal abscess, preferred carbon sources such as glucose are limiting, suggesting that S. aureus survives through the catabolism of secondary carbon sources. S. aureus encodes pathways to catabolize multiple amino acids, including those that generate pyruvate, 2-oxoglutarate, and oxaloacetate. To assess amino acid catabolism, S. aureus JE2 and mutants were grown in complete defined medium containing 18 amino acids but lacking glucose (CDM). A mutation in the gudB gene, coding for glutamate dehydrogenase, which generates 2-oxoglutarate from glutamate, significantly reduced growth in CDM, suggesting that glutamate and those amino acids generating glutamate, particularly proline, serve as the major carbon source in this medium. Nuclear magnetic resonance (NMR) studies confirmed this supposition. Furthermore, a mutation in the ackA gene, coding for acetate kinase, also abrogated growth of JE2 in CDM, suggesting that ATP production from pyruvate-producing amino acids is also critical for growth. In addition, although a functional respiratory chain was absolutely required for growth, the oxygen consumption rate and intracellular ATP concentration were significantly lower during growth in CDM than during growth in glucose-containing media. Finally, transcriptional analyses demonstrated that expression levels of genes coding for the enzymes that synthesize glutamate from proline, arginine, and histidine are repressed by CcpA and carbon catabolite repression. These data show that pathways important for glutamate catabolism or ATP generation via Pta/AckA are important for growth in niches where glucose is not abundant, such as abscesses within skin and soft tissue infections. IMPORTANCE S. aureus is a significant cause of both morbidity and mortality worldwide. This bacterium causes infections in a wide variety of organ systems, the most common being skin and soft tissue. Within a staphylococcal abscess, levels of glucose, a preferred carbon source, are limited due to the host immune response. Therefore, S. aureus must utilize other available carbon sources such as amino acids or peptides to proliferate. Our results show that glutamate and amino acids that serve as substrates for glutamate synthesis, particularly proline, function as major carbon sources during growth, whereas other amino acids that generate pyruvate are important for ATP synthesis via substrate-level phosphorylation in the Pta-AckA pathway. Our data support a model whereby certain amino acid catabolic pathways, and acquisition of those particular amino acids, are crucial for growth in niches where glucose is not abundant. IMPORTANCE S. aureus is a significant cause of both morbidity and mortality worldwide. This bacterium causes infections in a wide variety of organ systems, the most common being skin and soft tissue. Within a staphylococcal abscess, levels of glucose, a preferred carbon source, are limited due to the host immune response. Therefore, S. aureus must utilize other available carbon sources such as amino acids or peptides to proliferate. Our results show that glutamate and amino acids that serve as substrates for glutamate synthesis, particularly proline, function as major carbon sources during growth, whereas other amino acids that generate pyruvate are important for ATP synthesis via substrate-level phosphorylation in the Pta-AckA pathway. Our data support a model whereby certain amino acid catabolic pathways, and acquisition of those particular amino acids, are crucial for growth in niches where glucose is not abundant.


2020 ◽  
Vol 16 (10) ◽  
pp. e1007727 ◽  
Author(s):  
Michael Schmutzer ◽  
Andreas Wagner

Nongenetic phenotypic variation can either speed up or slow down adaptive evolution. We show that it can speed up evolution in environments where available carbon and energy sources change over time. To this end, we use an experimentally validated model of Escherichia coli growth on two alternative carbon sources, glucose and acetate. On the superior carbon source (glucose), all cells achieve high growth rates, while on the inferior carbon source (acetate) only a small fraction of the population manages to initiate growth. Consequently, populations experience a bottleneck when the environment changes from the superior to the inferior carbon source. Growth on the inferior carbon source depends on a circuit under the control of a transcription factor that is repressed in the presence of the superior carbon source. We show that noise in the expression of this transcription factor can increase the probability that cells start growing on the inferior carbon source. In doing so, it can decrease the severity of the bottleneck and increase mean population fitness whenever this fitness is low. A modest amount of noise can also enhance the fitness effects of a beneficial allele that increases the fraction of a population initiating growth on acetate. Additionally, noise can protect this allele from extinction, accelerate its spread, and increase its likelihood of going to fixation. Central to the adaptation-enhancing principle we identify is the ability of noise to mitigate population bottlenecks, particularly in environments that fluctuate periodically. Because such bottlenecks are frequent in fluctuating environments, and because periodically fluctuating environments themselves are common, this principle may apply to a broad range of environments and organisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Santosh Pandit ◽  
Oliver Konzock ◽  
Kirsten Leistner ◽  
VRSS Mokkapati ◽  
Alessandra Merlo ◽  
...  

AbstractEngineering of microbial cells to produce high value chemicals is rapidly advancing. Yeast, bacteria and microalgae are being used to produce high value chemicals by utilizing widely available carbon sources. However, current extraction processes of many high value products from these cells are time- and labor-consuming and require toxic chemicals. This makes the extraction processes detrimental to the environment and not economically feasible. Hence, there is a demand for the development of simple, effective, and environmentally friendly method for the extraction of high value chemicals from these cell factories. Herein, we hypothesized that atomically thin edges of graphene having ability to interact with hydrophobic materials, could be used to extract high value lipids from cell factories. To achieve this, array of axially oriented graphene was deposited on iron nanoparticles. These coated nanoparticles were used to facilitate the release of intracellular lipids from Yarrowia lipolytica cells. Our treatment process can be integrated with the growth procedure and achieved the release of 50% of total cellular lipids from Y. lipolytica cells. Based on this result, we propose that nanoparticles coated with axially oriented graphene could pave efficient, environmentally friendly, and cost-effective way to release intracellular lipids from yeast cell factories.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1077-1086 ◽  
Author(s):  
U. Nyberg ◽  
H. Aspegren ◽  
B. Andersson ◽  
J. la C. Jansen ◽  
I.S. Villadsen

In Sweden many advanced sewage treatment plants for BOD and phosphorus removal have to be extended with nitrogen removal. Due to existing plant configuration and wastewater composition, denitrification with supply of an external carbon source can be a cost-effective solution in many cases. At the Klagshamn wastewater treatment plant in Malmo investigations for extensive nitrogen removal have been made in a single-sludge system with pre-precipitation and post-denitrification where methanol was added for denitrification. Results from the tests showed that a high level of nitrogen removal can be reached, and that the process was stable and easy to operate. The process application gave less supplementary cost for an extended nitrogen removal than for upgrading the plant with larger basin volumes. In order to examine the purification performance caused by the addition of methanol, the starting period was followed extensively with online nitrate sensors and daily composite samples. The development of the denitrif ication capacity of the sludge with methanol and acetate as carbon sources was followed and microbiological changes were examined microscopically. Complete denitrification was obtained after approximately one month at 10°C. The denitrification capacity of the sludge with methanol reached that of acetate after about the same time. The microscopic examination revealed a growing population of budding and/or appendaged bacteria, presumably Hyphomicrobium spp, reaching a stable maximum at the time when optimal nitrate removal occurred.


2018 ◽  
Vol 40 (3) ◽  
Author(s):  
Tu Thi Anh Le

Bioflocculation producing bacteria isolated from soil and sediment in Da Lat City, Lam Dong Province, Vietnam, were characterized. Four bacterial strains that had high flocculation activity were Flavobacterium granuli CL, Hydrogenophaga pseudoflava DA, Alcaligenes cupidus PT2, Bacillus mucilaginosus PT3, with the flocculation efficiency of 91.37%, 83.12%, 76.92%, and 75.81%, respectively at 22°C, pH 10, the initial algae concentration (optical density at 690nm) of 1.25, and grown in media containing glucose as the carbon source. The bioflocculation efficiency was depended on the pH, carbon sources, the initial algae concentrations, bacteria strains, and the inital bioflocculant-producing bacteria concentrations. The temperature lightly affected the bioflocculation, no noticeable behavioral or activity changes were observed in mice that were orally administrated with four bacterial strains, and no treatment-related illness or death occurred after 72 hours. In general, the bioflocculation process is easy to operate, cost-effective, environment-friendly and therefore, it can be applied for industrial processing of microalgae.


2012 ◽  
Vol 518-523 ◽  
pp. 2319-2323 ◽  
Author(s):  
Guang Ying Liu ◽  
Huan Zhen Zhang ◽  
Wei Li ◽  
Xin Zhang

Carbon source used as electron donors is critical to heterotrophic denitrification. Addition of external carbon source is necessary when internal organics are deficient. A review was conducted on the use of external carbon source in denitrification. Traditional carbon sources such as methanol and ethanol, alternative carbon sources such as cellulose-rich materials, biodegradable polymers and primary sludge are included in external carbon sources. Present situation and problems of its biodegradability and effects in denitrification are summarized. Focus in external carbon source includes further study on the biodegradation mechanism of the media, slow release performance and nitrate removal rate of available carbon source and continuous research on new kinds of substrates. Recommendations on further study of carbon source are put forward.


Radiocarbon ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 573-586 ◽  
Author(s):  
Niels C Munksgaard ◽  
Anna V McBeath ◽  
Philippa L Ascough ◽  
Vladimir A Levchenko ◽  
Alan Williams ◽  
...  

ABSTRACTPyrolized carbon in biochar can sequester atmospheric CO2 into soil to reduce impacts of anthropogenic CO2 emissions. When estimating the stability of biochar, degradation of biochar carbon, mobility of degradation products, and ingress of carbon from other sources must all be considered. In a previous study we tracked degradation in biochars produced from radiocarbon-free wood and subjected to different physico-chemical treatments over three years in a rainforest soil. Following completion of the field trial, we report here a series of in-vitro incubations of the degraded biochars to determine CO2 efflux rates, 14C concentration and δ13C values in CO2 to quantify the contributions of biochar carbon and other sources of carbon to the CO2 efflux. The 14C concentration in CO2 showed that microbial degradation led to respiration of CO2 sourced from indigenous biochar carbon (≈0.5–1.4 μmoles CO2/g biochar C/day) along with a component of carbon closely associated with the biochars but derived from the local environment. Correlations between 14C concentration, δ13C values and Ca abundance indicated that Ca2+ availability was an important determinant of the loss of biochar carbon.


2020 ◽  
pp. 1192-1198
Author(s):  
M.S. Mohammad ◽  
Tibebe Tesfaye ◽  
Kim Ki-Seong

Ultrasonic thickness gauges are easy to operate and reliable, and can be used to measure a wide range of thicknesses and inspect all engineering materials. Supplementing the simple ultrasonic thickness gauges that present results in either a digital readout or as an A-scan with systems that enable correlating the measured values to their positions on the inspected surface to produce a two-dimensional (2D) thickness representation can extend their benefits and provide a cost-effective alternative to expensive advanced C-scan machines. In previous work, the authors introduced a system for the positioning and mapping of the values measured by the ultrasonic thickness gauges and flaw detectors (Tesfaye et al. 2019). The system is an alternative to the systems that use mechanical scanners, encoders, and sophisticated UT machines. It used a camera to record the probe’s movement and a projected laser grid obtained by a laser pattern generator to locate the probe on the inspected surface. In this paper, a novel system is proposed to be applied to flat surfaces, in addition to overcoming the other limitations posed due to the use of the laser projection. The proposed system uses two video cameras, one to monitor the probe’s movement on the inspected surface and the other to capture the corresponding digital readout of the thickness gauge. The acquired images of the probe’s position and thickness gauge readout are processed to plot the measured data in a 2D color-coded map. The system is meant to be simpler and more effective than the previous development.


Sign in / Sign up

Export Citation Format

Share Document