Relationships between bacteria and cyanobacteria in the Marrakech waste stabilisation ponds

2000 ◽  
Vol 42 (10-11) ◽  
pp. 171-178 ◽  
Author(s):  
K. Oufdou ◽  
N. Mezrioui ◽  
B. Oudra ◽  
M. Barakate ◽  
M. Loudiki ◽  
...  

In waste stabilisation pond systems the interactions between algae and bacteria have an important ecological effect and appeared to play a key role in the self-purification process. The aim of the present study is to evaluate the interactions between two axenic cyanobacteria: Synechocystis sp. and Pseudanabaena sp. with heterotrophic bacteria and some pathogenic bacteria: E. coli, Salmonella sp. and non-O1 V. cholerae. The results obtained showed that Synechocystis sp. (planktonic cyanobacterium) and Pseudanabaena sp. (benthic cyanobacterium) stimulated the growth and the survival of heterotrophic bacteria and non-O1 V. cholerae and reduced the survival of E. coli and Salmonella. Blooms of these cyanobacteria during hot periods which are a particularity in stabilisation ponds of Marrakech, could explain the dynamics of bacteria studied in this sewage treatment process. The presence of heterotrophic bacteria, showing relative high densities during hot periods, could be considered as an important bioticfactor which led to the cyanobacteria blooms in the Marrakech ponds which function under an arid Mediterranean climate.

2013 ◽  
Vol 8 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Adel A. S. AL-Gheethi ◽  
Norli Ismail ◽  
J. Lalung ◽  
Azieda Talib ◽  
A. N. Efaq ◽  
...  

The objective of this work was to study the prevalence of antibiotic resistance phenotypes among total coliforms (TC), E. coli, E. faecalis and Salmonella spp. in the sewage treated effluents generated from three sewage treatment plants in Penang Malaysia. Among the isolates tested, TC and E. coli occurred high resistance for cephalexin (100 and 90.47%), ampicillin (80.93 and 95.23%) and ciprofloxacin (19.06 and 14.3%) compared to E. faecalis (42.86, 71.4 and 4.7%) and Salmonella spp. (59.8, 47.46 and 14.3%) respectively. All E. coli strains, 76.18% of TC, 66.66% of E. faecalis and 35% of Salmonella spp. were multi-resistant.


Author(s):  
C. C. Nwankwo ◽  
M. Julie, Ovunda

In this study, health risk assessment of well water from twelve communities grouped into upland and riverine in Rivers State was carried out in several categories such as uses of water, skin infections and health assessment via questionnaire distribution. Malaria was recorded to be the most common disease related to water. Furthermore, water samples were collected and analysed for physiochemical, biochemical and pathological characteristics. The average pH was 7.52, an indication of neutrality. Several species of bacterial and fungal organisms were isolated and identified. The total heterotrophic bacteria (THB), total fungal and total coliform counts ranged from 14.0x104cfu/ml to 100.0x104cfu/ml, 3.2x103cfu/ml to 7.4x103cfu/ml and 4 cfu/100 ml to ≥2400 cfu/100 ml respectively. Morphological and biochemical observations revealed the presence of the following organisms: Aeromonas sp., Alcaligenes sp., Bacillus sp. Citrobacter sp. E. coli, Enterobacter sp, Klebsiella sp., Micrococcus sp., Proteus sp., Salmonella sp., Sarcina sp., Shigella sp., Staphylococcus sp., Streptococcus sp. and Vibrio sp. Staphylococcus sp. and Streptococcus sp. had the least percentage incidence of 8.3% while Vibrio sp had the most incidence of 100% in all the well water sampled. Well water is a source of pathogenic bacteria; hence, it is recommended that consistent water quality studies should be conducted on all the well water in the communities at least once in a year. Well water should also be treated before use to avoid the outbreak of water borne diseases.


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Lies Indah Sutiknowati

The objective of this research was to evaluate waters quality in Pari island waters for aquaculture purpose based on bacteriological information conducted in Mei and September 2011. Microbiological parameters analyzed were total density of bacteria for coliforms, E.coli, pathogenic, heterotrophic, halotoleran, phosphate-nitrate-ammonia breaker, and total cells. Method to analyze coliform bacteria was filtration, identification of pathogenic bacteria using biochemical test, density analises for heterotrophic bacteria, analises for phosphate-nitrate-ammonia breaker bacteria using pour plate, and total cell using Acridine Orange Epifluorescence Microscopy. Results showed that the abundance of total coliform cell was about 1000-7000 colony forming unit (cfu)/100 ml. The abundance of heterotrophic, halotolerant, phosphate-nitrate-ammonia bacteria in seawater was (3.6-4.3)x105 cfu/ml, (1.1-1.3)x105 cfu/ml, (0.5-3.44)x103cfu/ml; and (3.6-6.7)x105 cfu/ml, (1.6-2.7)x105 cfu/ml, (0.6-5.22)x103 cfu/ml in sediment, respectively. The total cell of bacteria was (0.05-2.1)x107cells/ml. The dog-conch (Strombus turturella) and blood-clamps (Anadara granosa) can survive in Pari Island and there was a significant increase in sea grass litter with growth average of 0.67 mm/day and 0.90 mm/day. During snails and clamps growth, there were found several genus of pathogenic bacteria such as Salmonella, Vibrio, Aeromonas, Pseudomonas, Citrobacter, Proteus, Shigella, Hafnia, and Yersinia. The results showed that Pari island waters was suitable for developing shellfish aquaculture dog conch and blood clamps. Keywords: bacteria, parameter, shellfish, aquaculture.


2019 ◽  
Vol 14 (1) ◽  
pp. 28-31 ◽  
Author(s):  
Rowles H. L.

Probiotics are live microorganisms, which when ingested in sufficient amounts, confer health benefits to the host by improving the gut microflora balance. The purpose of this research was to determine whether commercial probiotic products containing multitude of commensal bacteria would reduce the growth rate of pathogenic bacteria, specifically Escherichia coli and Salmonella typhimurium. Growth curves were established, and the growth rates were compared for samples of E. coli, S. typhimurium, Nature’s Bounty Controlled Delivery probiotic, Sundown Naturals Probiotic Balance probiotic, and cocultures of the pathogenic bacteria mixed with the probiotics. The findings of this research were that the commercial probiotics significantly reduced the growth rate of E. coli and S. typhimurium when combined in cocultures. Probiotics containing multiple strains may be taken prophylactically to reduce the risk of bacterial infections caused by E. coli and S. typhimurium. Probiotics could be used to reduce the high global morbidity and mortality rates of diarrheal disease.


Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


1983 ◽  
Vol 15 (5) ◽  
pp. 129-135 ◽  
Author(s):  
Z Filip ◽  
K Seidel ◽  
H Dizer

To determine whether long-term sewage treatment can take place without a pollution risk for soil and groundwater, samples from sewage irrigation fields in West Berlin which have been in use since about 1890 were analyzed for enteric viruses and microorganisms. Enteric viruses were detected in only seven samples from a total number of eighty seven taken from different soil depths. With only one exception, no viruses were found below 60 cm. No viruses were detected in groundwater samples. Long-term sewage irrigation did not result in significant changes in the colony courts of aerobic soil bacteria, but the counts of anaerobic bacteria and actinomycetes were slightly elevated and those of microscopic fungi slightly decreased. Potentially pathogenic bacteria were not detected in soil below 90 cm.


2019 ◽  
Vol 25 (34) ◽  
pp. 3645-3663 ◽  
Author(s):  
Muhammad Ismail ◽  
Kalsoom Akhtar ◽  
M.I. Khan ◽  
Tahseen Kamal ◽  
Murad A. Khan ◽  
...  

: Water pollution due to waste effluents of the textile industry is seriously causing various health problems in humans. Water pollution with pathogenic bacteria, especially Escherichia coli (E. coli) and other microbes is due to the mixing of fecal material with drinking water, industrial and domestic sewage, pasture and agricultural runoff. Among the chemical pollutants, organic dyes due to toxic nature, are one of the major contaminants of industrial wastewater. Adequate sanitation services and drinking quality water would eliminate 200 million cases of diarrhea, which results in 2.1 million less deaths caused by diarrheal disease due to E. coli each year. Nanotechnology is an excellent platform as compared to conventional treatment methods of water treatment and remediation from microorganisms and organic dyes. In the current study, toxicity and carcinogenicity of the organic dyes have been studied as well as the remediation/inactivation of dyes and microorganism has been discussed. Remediation by biological, physical and chemical methods has been reviewed critically. A physical process like adsorption is cost-effective, but can’t degrade dyes. Biological methods were considered to be ecofriendly and cost-effective. Microbiological degradation of dyes is cost-effective, eco-friendly and alternative to the chemical reduction. Besides, certain enzymes especially horseradish peroxidase are used as versatile catalysts in a number of industrial processes. Moreover, this document has been prepared by gathering recent research works related to the dyes and microbial pollution elimination from water sources by using heterogeneous photocatalysts, metal nanoparticles catalysts, metal oxides and enzymes.


2019 ◽  
Vol 18 (31) ◽  
pp. 2731-2740 ◽  
Author(s):  
Sandeep Tiwari ◽  
Debmalya Barh ◽  
M. Imchen ◽  
Eswar Rao ◽  
Ranjith K. Kumavath ◽  
...  

Background: Mycobacterium tuberculosis, Vibrio cholerae, and pathogenic Escherichia coli are global concerns for public health. The emergence of multi-drug resistant (MDR) strains of these pathogens is creating additional challenges in controlling infections caused by these deadly bacteria. Recently, we reported that Acetate kinase (AcK) could be a broad-spectrum novel target in several bacteria including these pathogens. Methods: Here, using in silico and in vitro approaches we show that (i) AcK is an essential protein in pathogenic bacteria; (ii) natural compounds Chlorogenic acid and Pinoresinol from Piper betel and Piperidine derivative compound 6-oxopiperidine-3-carboxylic acid inhibit the growth of pathogenic E. coli and M. tuberculosis by targeting AcK with equal or higher efficacy than the currently used antibiotics; (iii) molecular modeling and docking studies show interactions between inhibitors and AcK that correlate with the experimental results; (iv) these compounds are highly effective even on MDR strains of these pathogens; (v) further, the compounds may also target bacterial two-component system proteins that help bacteria in expressing the genes related to drug resistance and virulence; and (vi) finally, all the tested compounds are predicted to have drug-like properties. Results and Conclusion: Suggesting that, these Piper betel derived compounds may be further tested for developing a novel class of broad-spectrum drugs against various common and MDR pathogens.


2021 ◽  
Vol 770 (1) ◽  
pp. 012069
Author(s):  
Yunpeng Li ◽  
Yan Wang ◽  
Ruhai Liu ◽  
Long Shao ◽  
Xiaoyu Liu ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


Sign in / Sign up

Export Citation Format

Share Document