Dairy farm wastewater treatment by an advanced pond system

2003 ◽  
Vol 48 (2) ◽  
pp. 291-297 ◽  
Author(s):  
R.J. Craggs ◽  
C.C. Tanner ◽  
J.P.S. Sukias ◽  
R.J. Davies-Colley

Waste stabilisation ponds (WSPs) have been used for the treatment of dairy farm wastewater in New Zealand since the 1970s. The conventional two pond WSP systems provide efficient removal of wastewater BOD5 and total suspended solids, but effluent concentrations of other pollutants including nutrients and faecal bacteria are now considered unsuitable for discharge to waterways. Advanced Pond Systems (APS) provide a potential solution. A pilot dairy farm APS consisting of an Anaerobic pond (the first pond of the conventional WSP system) followed by three ponds: a High Rate Pond (HRP), an Algae Settling Pond (ASP) and a Maturation Pond (which all replace the conventional WSP system facultative pond) was evaluated over a two year period. Performance was compared to that of the existing conventional dairy farm WSP system. APS system effluent quality was considerably higher than that of the conventional WSP system with respective median effluent concentrations of BOD5: 34 and 108 g m-3, TSS: 64 and 220 g m-3, NH4-N: 8 and 29 g m-3, DRP: 13 and 17 g m-3, and E. coli: 146 and 16195 MPN/100 ml. APS systems show great promise for upgrading conventional dairy farm WSPs in New Zealand.

2003 ◽  
Vol 48 (2) ◽  
pp. 17-23
Author(s):  
H.E. Archer ◽  
S.A. Donaldson

Waste stabilisation ponds (WSP) have been a popular form of wastewater treatment in New Zealand both for large cities and small communities. Most WSP were constructed from 1960 to 1985 and were single ponds or a primary and secondary pond in series of similar size. Since 1995, improvements comprising primary and maturation ponds, with four to six cells in series have been constructed or retrofitted to original two cell ponds. The Seddon and Blenheim ponds include in-bank rock filters between maturation cells as a lower cost way of providing this feature for reduction of solids. Operating results show reduced variability in final effluent quality for BOD and SS. In addition, very good reductions of faecal coliform and enterococci have been achieved along with good reductions of ammonia and total nitrogen for most of the year except the middle of winter. Extensive use of rock as rip-rap bank protection and in the rock filters, appears to have provided sufficient extra surface area for a nitrifying biofilm to develop.


2007 ◽  
Vol 55 (11) ◽  
pp. 257-264 ◽  
Author(s):  
J.B.K. Park ◽  
R.J. Craggs

New Zealand has over 1000 anaerobic wastewater stabilisation ponds used for the treatment of wastewater from farms and industry. Traditional anaerobic ponds were not designed to optimise anaerobic digestion of wastewater biomass to produce biogas and these uncovered ponds allowed biogas to escape to the atmosphere. This release of biogas not only causes odour problems, but contributes to GHG (greenhouse gas) emissions and is wasteful of energy that could be captured and used. Biogas production from anaerobic stabilisation ponds treating piggery and dairy wastewater was measured using floating 25 m2 HDPE covers on the pond surface. Biogas composition was analysed monthly and gas production was continually monitored. Mean areal biogas (methane) production rates from piggery and dairy anaerobic ponds were 0.78 (0.53) m3/m2/d and 0.03 (0.023) m3/m2/d respectively. Average CH4 content of the piggery and dairy farm biogas were 72.0% and 80.3% respectively. Conversion of the average volume of methane gas that could be captured from the piggery and dairy farm ponds (393.4 m3/d and 40.7 m3/d) to electricity would reduce CO2 equivalent GHG emissions by 5.6 tonnes/d and 0.6 tonnes/d and generate 1,180 kWh/d and 122 kWh/d. These results suggest that anaerobic ponds in New Zealand release considerable amounts of GHG and that there is great potential for energy recovery.


2021 ◽  
Vol 19 (3) ◽  
pp. 349-362
Author(s):  
Prayuth Saekhow ◽  
◽  
Chayaphon Sriphannam ◽  
◽  

We investigated the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains in dairy farm wastewater in Chiang Mai, Thailand. We analyzed wastewater samples collected from 150 dairy farms and found that 88.7% of the farms (n = 133) were positive for ESBL-producing E. coli. Multiplex polymerase chain reaction (PCR) amplification was performed to characterize the presence of bla CTX-M, bla TEM, and blaSHV in ESBL-producing isolates. blaCTX-M was found in all isolates (n = 133), followed by blaTEM (80/133, 60.2%), whereas blaSHV was not detected in any isolate. blaCTX-M and blaTEM were present in 60.2% (80/133) of the isolates, and 39.8% (53/133) isolates carried bla CTX-M alone. Subgroup analysis showed that CTX-M-1 was the most prevalent subgroup among the isolates (129/133, 97.0%), followed by CTX-M-8 (2/133, 1.5%) and CTX-M-9 (2/133, 1.5%). The distribution of the phylogenetic groups was as follows: group A (100/133, 75.2%), followed by B1 (14/133, 10.5%), D (6/133, 4.5%), F (6/133, 4.5%), B2 (4/133, 3.0%), and E (3/133, 2.3%). Based on enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and dendrogram analysis, 24 isolates were classified into clades I (n = 21), II (n =1), and III (n =2). Minor genetic differences were found in all clade I isolates. Our data suggest that the circulating of ESBL-producing E. coli carried at least one bla gene strain distributed in dairy farm wastewater in Chiang Mai.


2005 ◽  
Vol 51 (12) ◽  
pp. 107-110 ◽  
Author(s):  
R.J. Davies-Colley ◽  
R.J. Craggs ◽  
J. Park ◽  
J.P.S. Sukias ◽  
J.W. Nagels ◽  
...  

Advanced pond systems (APS), incorporating high-rate ponds, algal settling ponds, and maturation ponds, typically achieve better and more consistent disinfection as indicated by Escherichia coli than conventional waste stabilisation ponds. To see whether this superior disinfection extends also to enteric viruses, we studied the removal of somatic phages (‘model’ viruses) in a pilot-scale APS treating sewage. Measurements through the three aerobic stages of the APS showed fairly good removal of somatic phage in the summer months (2.2 log reduction), but much less effective removal in winter (0.45 log reduction), whereas E. coli was removed efficiently (>4 logs) in both seasons. A very steep depth-gradient of sunlight inactivation of somatic phage in APS pond waters (confined in silica test tubes) is consistent with inactivation mainly by solar UVB wavelengths. Data for F-RNA phage suggests involvement of longer UV wavelengths. These findings imply that efficiency of virus removal in APS will vary seasonally with variation in solar UV radiation.


2005 ◽  
Vol 51 (12) ◽  
pp. 133-138 ◽  
Author(s):  
H.E. Archer ◽  
B.M. O'Brien

This paper reviews the performance of two waste stablisation ponds (WSP) systems in the South Island of New Zealand that have been upgraded to multiple ponds-in-series to improve effluent quality. Results of monitoring are provided which show that it is possible to achieve relatively low ammonia (approximately 1 g/m3) and total nitrogen (approximately 10 g/m3) effluent concentrations through the use of nitrification filter beds (rock trickling filters) and sand filters. Evidence suggests that the nitrification and denitrification processes in the extra biofilm surface area provided by the rock filters or rock bank protection is primarily responsible for the improved effluent quality. The paper also compares the WSP results with effluent quality predicted by published formulae. It is concluded that these formulae do not reliably predict the performance of WSP systems and the development of universally applicable design guidelines would be useful.


2003 ◽  
Vol 48 (2) ◽  
pp. 81-87 ◽  
Author(s):  
R.J. Davies-Colley ◽  
R.J. Craggs ◽  
J.W. Nagels

“Advanced” pond systems (APS) have the potential for improving treatment, including disinfection, over conventional WSPs. Disinfection in a pilot scale APS at Ngatea, New Zealand was studied. This system comprises a high-rate algal pond (HRP) that optimises growth of settleable colonial green algae, followed by an algal settling pond (ASP) that removes much of the nutrients and solids as non-noxious algal sludge, and then a maturation pond (MP) for effluent polishing. Monitoring of this pilot-scale system over 2 years showed excellent overall removal of E. coli (average of 2000-fold reduction), with approximately 1 log removal in each of the three stages. Experiments in the pilot scale HRP suggest that most E. coli removal in this stage is inactivation by sunlight exposure, but with an important contribution from continuous dark processes. Preliminary experiments on the pilot scale algal settling pond (APS) suggest the combined effect of sedimentation of bacteria and sunlight disinfection of the (clarified) supernatant water.


2007 ◽  
Vol 6 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Murray Close ◽  
Rod Dann ◽  
Andrew Ball ◽  
Ruth Pirie ◽  
Marion Savill ◽  
...  

Intensification of dairying on irrigated pastures has led to concern over the microbial quality of shallow groundwater used for drinking purposes. The effects of intensive dairying and border-strip irrigation on the leaching of E. coli and Campylobacter to shallow groundwater were assessed over a three-year period in the Waikakahi catchment, Canterbury, New Zealand. Well selection excluded other sources of contamination so that the effect of dairying with border-strip irrigation could be assessed. Groundwater samples (135) were collected, mostly during the irrigation season, with E. coli being detected in 75% of samples. Campylobacter was identified in 16 samples (12%). A risk assessment of drinking water with these levels of Campylobacter was undertaken. A probability distribution was fitted to the observed Campylobacter data and the @RISK modeling software was used, assuming a dose response relationship for Campylobacter and consumption of 1 L/day of water. The probability of infection on any given day in the study area was estimated at 0.50% to 0.76%, giving an estimated probability of infection during the irrigation season of 60% to 75%. An epidemiological assessment of the Canterbury region comparing areas encompassing dairy within major irrigation schemes (∼55% border-strip irrigation) to two control groups was undertaken. Control group 1 (CG1) encompasses areas of dairying without major irrigation schemes, and a second larger control group (CG2) comprises the rest of the Canterbury region. Comparisons of the subject group to control groups indicated that there was a statistically significant increase in age-standardised rates of campylobacteriosis (CG1 Relative Risk (RR)=1.51 (95% CI = 1.31-1.75); CG2 RR = 1.51 (1.33–1.72)); cryptosporidiosis (CG1 RR = 2.08 (1.55–2.79); CG2 RR = 5.33 (4.12–6.90)); and salmonellosis (CG2 RR = 2.05 (1.55–2.71)).


Author(s):  
J. Luo ◽  
A. Donnison ◽  
C. Ross ◽  
S. Ledgard ◽  
B. Longhurst

Farmers are increasingly using management systems such as moving cows out of paddocks onto stand-off pads to protect wet soils from damage during winter. Studies were carried out to investigate nutrient and faecal bacterial retention or loss from stand-off pad materials. A preliminary laboratory study found that a range of natural materials, including crushed pine bark, wood chips, zeolite and soil can retain between 66% and 76% of applied cows' excreta nitrogen (N). Zeolite was found to be particularly good at reducing ammonia (NH3) volatilisation losses from the columns. A field-scale standoff pad study at a Waikato dairy farm, in the winter season of 2005, indicated that carbon (C)-rich materials including both bark and sawdust can be used as standoff pad materials with effective retention of N and faecal bacteria. Both bark and sawdust pads retained about 60% of deposited excreta N. Substantially more Escherichia coli were recovered in the drainage from the bark pad (total yield 3.1 x 1011 E. coli) than from the sawdust pad (total yield 7.5 x 109 E. coli) demonstrating that sawdust was more effective than bark in retaining these faecal bacteria. Keywords: stand-off pads, winter management, dairy, nitrogen, faecal bacteria, natural materials


2000 ◽  
Vol 42 (10-11) ◽  
pp. 195-202 ◽  
Author(s):  
R. J. Craggs ◽  
C. C. Tanner ◽  
J. P. Sukias ◽  
R. J. Davies-Colley

Dairy farm waste stabilisation ponds are a major source of ammoniacal-N to surface waters in New Zealand. Ammoniacal-N is of particular concern in New Zealand where native aquatic invertebrates appear to be very sensitive to ammonia toxicity. This paper investigates improvement of ammoniacal-N nitrification in dairy farm facultative ponds with mechanical aeration and provision of biofilm attachment surfaces. Biofilm was grown on surfaces at different depths (0.1 m, 0.2 m and 0.6 m) under three mechanical aeration regimes (no aeration, night-only aeration and continuous aeration). Nitrification potential of biofilm was determined as the rate of ammoniacal-N removal in bioassays with ammoniacal-N spiked pond water or culture medium under controlled conditions (20°C, pH 7.0, constant stirring, DO 2–3 g m−3, dark). The nitrification potentials (0.30 g N m−2 biofilm d−1 to 2.17 g N m−2 biofilm d−1) of biofilm-coated surfaces were largely controlled by oxygen availability and consistency of supply in the pond. Nitrification potentials were high where oxygen availability was high, such as close to the pond surface where atmospheric re-aeration and algal photosynthesis were prevalent. Nitrification potentials of biofilms incubated at depth were enhanced by mechanical aeration, with higher values achieved under the continuous aeration regime and at more turbulent sites closer to the aerator.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


Sign in / Sign up

Export Citation Format

Share Document