scholarly journals The impact of stormwater source-control strategies on the (low) flow regime of urban catchments

2013 ◽  
Vol 69 (4) ◽  
pp. 739-745 ◽  
Author(s):  
Perrine Hamel ◽  
Tim D. Fletcher

Stormwater management strategies increasingly recognise the need to emulate the pre-development flow regime, in addition to reducing pollutant concentrations and loads. However, it is unclear whether current design approaches for stormwater source-control techniques are effective in restoring the whole flow regime, and in particular low flows, towards their pre-development levels. We therefore modelled and compared a range of source-control stormwater management strategies, including some specifically tailored towards enhancing baseflow processes. The strategies were assessed based on the total streamflow volume and three low flow metrics. Strategies based on harvesting tanks showed much greater volume reduction than those based on raingardens. Strategies based on a low flow rate release, aimed at mimicking natural baseflow, failed to completely restore the baseflow regime. We also found that the sensitivity of the low flow metrics to the proportion of catchment treated varied amongst metrics, illustrating the importance of metrics selection in the assessment of stormwater strategies. In practice, our results suggest that realistic scenarios using low flow release from source-control techniques may not be able to fully restore the low flow regime, at least for perennial streams. However, a combination of feasibly-sized tanks and raingardens is likely to restore the baseflow regime to a great extent, while also benefitting water quality through the retention and filtration processes.

2015 ◽  
Vol 40 (3) ◽  
pp. 480-492 ◽  
Author(s):  
Geoff J. Vietz ◽  
Christopher J. Walsh ◽  
Tim D. Fletcher

The urban stream syndrome is an almost universal physical and ecological response of streams to catchment urbanization. Altered channel geomorphology is a primary symptom that includes channel deepening, widening and instability. While the common approach is to treat the symptoms (e.g. modifying and stabilizing the channel), many stream restoration objectives will not be achieved unless the more vexing problem, treating the cause, is addressed in some way. Research demonstrates that the dominant cause of geomorphic change in streams in urban catchments is an altered flow regime and increase in the volume of stormwater runoff. Thus, managers can choose to treat the symptoms by modifying and controlling the channel to accommodate the altered flow regime, or treat the cause by modifying the flow regime to reduce the impact on channel morphology. In both cases treatments must, at the least, explicitly consider hydrogeomorphology—the science of the linkages between various hydrologic and geomorphic processes—to have a chance of success. This paper provides a review of recent literature (2010 to early 2015) to discuss fluvial hydrogeomorphology in the management of streams subject to urbanization. We suggest that while the dominant approach is focused on combating the symptoms of catchment urbanization (that we refer to as channel reconfiguration), there is increasing interest in approaches that attempt to address the causes by using stormwater control measures at a range of scales in the catchment (e.g. flow-regime management). In many settings in the oft-constrained urban catchment, effective management of stream morphology may require multiple approaches. To conclude, we identify five research areas that could inform urban hydrogeomorphology, one of the most challenging of which is the extent to which the volume of excess urban stormwater runoff can be reduced to mitigate the impact on stream geomorphology.


Horticulturae ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 47 ◽  
Author(s):  
Angeliki Elvanidi ◽  
Nikolaos Katsoulas ◽  
Constantinos Kittas

Water and nitrogen deficit stress are some of the most important growth limiting factors in crop production. Several methods have been used to quantify the impact of water and nitrogen deficit stress on plant physiology. However, by performing machine learning with hyperspectral sensor data, crop physiology management systems are integrated into real artificial intelligence systems, providing richer recommendations and insights into implementing appropriate irrigation and environment control management strategies. In this study, the Classification Tree model was used to group complex hyperspectral datasets in order to provide remote visual results about plant water and nitrogen deficit stress. Soilless tomato crops are grown under varying water and nitrogen regimes. The model that we developed was trained using 75% of the total sample dataset, while the rest (25%) of the data were used to validate the model. The results showed that the combination of MSAVI, mrNDVI, and PRI had the potential to determine water and nitrogen deficit stress with 89.6% and 91.4% classification accuracy values for the training and testing samples, respectively. The results of the current study are promising for developing control strategies for sustainable greenhouse production.


2020 ◽  
Author(s):  
Rahul Kumar Singh ◽  
Dr. Manoj Kumar Jain

<p>The rivers around the world have been transformed due to various anthropogenic activities and have led to the altered natural flow regime, which is crucial for controlling the essential environmental conditions within the river which in turn forms the biotic diversity. This study quantifies the adverse impacts due to the construction of dams on the hydrology of the Godavari and Krishna River Basins over the last half a century. The quantification of hydrologic alteration at five representative gauging stations of both the rivers has undertaken using Indicator of Hydrological Alteration (IHA) and the Flow Health (FH) methods based on the Range of Variability approach. To evaluate the alterations of flow regime due to the impact of dams (anthropogenic) only, the data for wet and dry years were excluded from the analysis as these represent the impact of climate variability. The IHA results reveal that the average monthly flow (especially from June to September), annual extreme streamflow indices (1-, 3-, and 7-day maxima flow), and rise and fall rates were among the most affected ones when compared to the pre-impacted period. The improved overall hydrologic alteration values for the Dhalegaon, Nowrangpur, K. Agraharam, and Vijayawada stations were found approximately 75.5%, 73.2%, 76.9 %, and 67.9 % respectively, suggesting a significant impact on the overall riverine ecosystem. The flow health (FH) analysis scores for high flow (HF) (K.Agraharam and Yadgir) highest monthly (HM) (Dhalegaon, K.Agraharam, and Yadgir), Low Flow (LF) (Dhalegaon) and flood flow intervals (FFI) (Dhalegaon and Vijayawada) during the test period were in the very high alteration range and these all hydrological indicator represents important ecological functions in both the rivers. The results showed in this study may guide in strategizing the multi-step process needed to improve the riverine ecosystems of Godavari and Krishna Basins and their ecological functioning.</p><p>Keywords: Hydrological alteration; Krishna River; Godavari River; Ecosystem</p>


2020 ◽  
Vol 12 (23) ◽  
pp. 10189
Author(s):  
Joanna Boguniewicz-Zabłocka ◽  
Andrea G. Capodaglio

Sustainable stormwater management approaches in accordance with the EU Water Framework Directive (WFD) allow a source control to handle the quality and quantity of the runoff at local level or near the source. The most popular technologies applied in Europe are green roofs, porous pavements, retention basins and bioswales/raingardens. In this article, two of these solutions (retention tank with reuse, and rain garden, respectively), applied to single dwelling case studies in a suburban area in the Silesia Region (Poland), are illustrated and analyzed. The selected cases consider technical and economic aspects as the most important factors for decision on the selection of onsite stormwater management approach. Both systems have been operational for approximately two years. The retention tank proved a good solution, reducing stormwater overflows and allowing local water reuse for lawn irrigation; however, investment and maintenance costs in this case are relatively higher. The raingarden proved to work efficiently in this small scale implementation and implied much lower initial investment and costs. The economic sustainability of these interventions at single dwelling scale was analyzed, showing interesting returns, with outcome depending on the degree of possible water reuse (lower water bills) and availability of fiscal or fee incentives. Introduction of financial incentive schemes will encourage homeowners and developers to implement stormwater control solutions, allowing rapid amortization of investment costs with additional benefits to the community, such as reduced environmental impact of stormwater overflows and possible economies in the construction and management of stormwater systems.


2021 ◽  
Vol 57 (No. 2) ◽  
pp. 75-94
Author(s):  
Ainur Ainiah Azman Husni ◽  
Siti Izera Ismail ◽  
Noraini Jaafar ◽  
Dzarifah Zulperi

Bacterial fruit blotch (BFB) caused by Acidovorax citrulli, represents one of the most destructing diseases of cucurbits, especially to watermelon- and melon producing-regions. This disease has been spread sporadically to many countries globally, due to the unintentionally dispersal of contaminated commercial seeds. The BFB causes massive yield losses up to 100% under conducive conditions. Once infected, all parts of the host plants are extremely susceptible to this bacterium, especially the seedlings and fruits parts. In recent years, various management approaches and detection tools have been employed to control A. citrulli. Genotypic characterization methods revealed two distinct groups of A. citrulli strains; (i) group I strains primarily isolated from non-watermelon cucurbits and consist of moderate to highly aggressive strains from wide range of cucurbit hosts, and (ii) group II strains isolated from watermelon which are highly aggressive on watermelon, but mildly aggressive on non-watermelon hosts. In this paper, an attempt has been made to review research findings where the impact of diverse methods and management approaches were applied in detection and controlling of A. citrulli infection. A better understanding of this devastating bacterium will serve as guidelines for agricultural practitioners in developing the most efficient and sustainable BFB control strategies.


Author(s):  
G. Petrucci ◽  
J.-F. Deroubaix ◽  
B. Tassin

Abstract. Stormwater source control is becoming a common strategy for urban stormwater management in many countries. It relies on regulations or other policy instruments compelling or inciting implementation, for each new urban development, of small-scale facilities to locally store and manage stormwater. Local authorities that pioneered source control since the 1980s have already observed that small-scale facilities systematically implemented over a catchment are able to influence its hydrological behaviour. This capability is the main strength of source control, as it allows compensation for the negative effects of urbanization. Yet, it also represents its main risk: if initial decision-making is not sufficiently accurate, source control can produce long-term negative effects. Because of its current spreading, source control will acquire an increasing role as a driver of hydrological changes in urban catchments, and the directions of these changes depend on current policy-making practices. This paper presents an analysis and a critical discussion of the main objectives that policy-makers attribute to stormwater source control. The investigation is based on a sample of French case studies, completed by a literature review for international comparison. It identifies four main objectives, some typical of urban stormwater management and some more innovative: flood reduction, receiving waters protection, sustainable development, costs reduction. The discussion focuses on how current policy-making practices are able to translate these objectives in concrete policy instruments, and on which knowledge and tools could improve this process. It is shown that for some objectives, basic knowledge is available, but the creation of policy instruments which are effective at the catchment scale and adapted to local conditions is still problematic. For other objectives, substantial lacks of knowledge exist, casting doubts on long-term effectiveness of current policy instruments. Research directions are identified to improve source control policies and thus the future hydrologic behaviour of many urban catchments.


2016 ◽  
Vol 16 (2) ◽  
pp. 95-103
Author(s):  
Edmund Tomaszewski

Abstract The main aim of this study is to make an assessment of the impact of Lake Gopło on a river low-flow regime. Two water gauges were selected, located in an upstream and downstream position to the lake on the River Noteć. On the basis of the daily discharge series from the period 1965–1990, a group of low-flow regime estimators was computed. Analyses involved various aspects of minimum flows and drought streamflow deficits. Comparison of the data between both gauging stations showed the extent of the influence of water management on Lake Gopło on low-flow regime transformation in the River Noteć.


2020 ◽  
Vol 12 (14) ◽  
pp. 5494
Author(s):  
Yang Shao ◽  
Zhongbin Luo ◽  
Huan Wu ◽  
Xueyan Han ◽  
Binghong Pan ◽  
...  

The impact of work zones on traffic is a common problem encountered in traffic management. The reconstruction of roads is inevitable, and it is necessary and urgent to reduce the impact of the work zone on the operation of traffic. There are many existing research results on the influence of highway work zones, including management strategies, traffic flow control strategies, and various corresponding model theories. There are also many research results on the impacts of urban road and subway construction on traffic operation, including construction efficiency, economic impact, and travel matrix. However, there are few studies concerning the choice of work zone location, and most previous studies have assumed that the work zone choice was scientific and reasonable. Therefore, it is reasonable to choose the location of the work zone and to assess whether there is room for improvement in the road form of the work zone, but this remains a research gap. Therefore, we studied a seven-lane main road T-intersection in Xi’an, China, and investigated a work zone located at this intersection that caused a road offset, leading to the non-aligned flow of main traffic. We designed two road improvement schemes and multiple transition schemes, used VISSIM software to evaluate the traffic operation of the two schemes, and used the entropy method to choose the suitability of the two schemes under different conditions. According to the results, in the best case, the driving time, delay, and number of stops are reduced by 44%, 66%, and 92%.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 847
Author(s):  
Andressa S. Berça ◽  
Abmael da S. Cardoso ◽  
Vanessa Z. Longhini ◽  
Luís O. Tedeschi ◽  
Robert Michael Boddey ◽  
...  

Nitrogen (N) management affects herbage production and chemical composition; however, information on the impact of tropical herbage on N and carbohydrate fractions is scarce. A two-year study was conducted to investigate the potential use of pintoi peanut (Arachis pintoi) compared with N fertilization of palisade grass (Brachiariabrizantha cv. Marandu) by evaluating the herbage chemical composition (fractionation of protein and carbohydrate), herbage mass and accumulation rate, herbage disappearance rate, and stocking rate of pastures. The experiment was conducted in a completely randomized design with three treatments, and four replications (paddocks) were used with twenty-one non-lactating crossbred dairy heifers. Treatments consisted of pastures of palisade grass without a N source (control), fertilized with urea (150 kg/ha/year; fertilized), or mixed with pintoi peanut (mixed). Inclusion of the legume increased concentrations of fractions A (p = 0.009), which is the soluble N compound, and B3 (p < 0.001), which is slowly degraded true protein, compared with pastures fertilized with N and non-fertilized pastures. Nitrogen fertilization increased fraction B1 + B2 (p = 0.046), mainly true proteins, and decreased fraction C (p = 0.0007), indigestible protein, and neutral detergent fiber concentrations (p = 0.0003), contributing to increasing the nutritive value of the herbage. Additionally, N fertilization increased herbage mass (p = 0.004) and herbage allowance (p = 0.0001). Both N fertilization and biologically fixed N increased herbage allowance (p = 0.02) and accumulation rate (p = 0.02), as well as the crude protein content of herbage (p < 0.0001) compared with non-fertilized pastures. Nitrogen fertilization increased true protein and decreased indigestible protein of herbage and promoted a greater herbage mass production, while the inclusion of legumes increased soluble protein and decreased the slowly degraded true protein of herbage. Both N management strategies increased herbage allowance and accumulation rate.


2020 ◽  
Author(s):  
Anna Maria De Girolamo ◽  
Antonio Lo Porto

&lt;p&gt;The potential impact of climate change on the flow regime was analyzed for the Celone River, an intermittent river system in the Apulia Region (S_E, Italy). Rainfall and temperature recorded in the past century were analyzed. Flow regime under climate projections for the future (2030&amp;#8211;2059) and for the recent conditions (1980&amp;#8211;2009) were compared. The Soil and Water Assessment Tool, a hydrological model, was used to simulate daily streamflow in selected river sections.&lt;/p&gt;&lt;p&gt;Daily climate data used to simulate future scenarios were obtained by a combination of a global circulation model (GCM, ECHAM5) and different regional models (RACMO2; RCA; REMO). The impact on the hydrological regime was estimated as a deviation from the baseline (1980&amp;#8211;2009) by using a number of indicators of hydrological alterations.&lt;/p&gt;&lt;p&gt;From 1919 to 2012, a slight reduction in total annual rainfall and a decrease of the number of rainy days was recorded, hence, an increase in extreme rainfall events. From 1954 to 2012, the minimum daily temperature in January and February increased reducing the snowfall.&lt;/p&gt;&lt;p&gt;Under future scenarios, an increase in mean temperature was predicted for all months between 0.5&amp;#8211;2.4 &amp;#176;C and a reduction in precipitation (by 4&amp;#8211;7%). As a consequence, the flow regime moves towards drier conditions and the divergence of the flow regime from the current conditions increases in future scenarios, especially for those reaches classified as I&amp;#8208;D (ie, intermittent&amp;#8208;dry) and E (ephemeral).&lt;/p&gt;&lt;p&gt;Hydrological indicators showed an extension of the dry season and an exacerbation of the extreme low flow conditions with a decrease in both high flow and low flow magnitudes for various time durations. These changes are expected to have several implications for river ecosystems that have to be considered in River Basin Management and Planning.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document