scholarly journals Adsorption performance of Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) by aminated solution-blown polyacrylonitrile micro/nanofibers

2018 ◽  
Vol 2017 (2) ◽  
pp. 378-389 ◽  
Author(s):  
Huiqing Lou ◽  
Xianzhong Cao ◽  
Xin Yan ◽  
Lina Wang ◽  
Zengbin Chen

Abstract In this work, we prepared amidoxime-functionalized polyacrylonitrile (APAN) micro/nanofibers by modifying solution-blown PAN fibers with hydroxylamine hydrochloride, and investigated the adsorption performance of the APAN fibers for Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from aqueous solutions. Batch experiments and quantitative analysis were conducted considering initial pH and contact time as controlling parameters. The equilibrium data were better explained by the Langmuir model with maximum adsorption capacities of 185, 204, 105, 104, 345 and 91 mg/g for Cd(II), Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The adsorption kinetics were found to follow the pseudo-second-order kinetic model. The calculated thermodynamic parameters demonstrated that the adsorption of metal ions onto APAN fibers is feasible, spontaneous and endothermic. The five adsorption–desorption cycle experiments showed that APAN micro/nanofiber adsorbent exhibits good reusability, and has a potential application for the removal of heavy metals from wastewater.

2017 ◽  
Vol 75 (10) ◽  
pp. 2316-2321 ◽  
Author(s):  
Hao Peng ◽  
Zuohua Liu ◽  
Changyuan Tao

Melamine, possessing three free amino groups and three aromatic nitrogen atoms in its molecule, has great potential as an adsorbent for metal ions. We investigated three impact factors of the adsorption process: the initial pH of the vanadium solution, contact time and reaction temperature. The adsorption kinetics could be accurately described by the pseudo-second-order kinetic model. Langmuir and Freundlich models fitted well with the experimental equilibrium data, and the maximal adsorption capacity was found to be 1,428.57 mg vanadium/g melamine, and the Freundlich model showed the adsorption is privilege type.


2019 ◽  
Vol 800 ◽  
pp. 181-186 ◽  
Author(s):  
Nour El Houda Larbi ◽  
Djilali Redha Merouani ◽  
Hakim Aguedal ◽  
Abdelkader Iddou ◽  
Amine Khelifa

Heavy metals are very toxic water pollutant. Their presence not only affect human beings but also animals and vegetation because of their mobility in aqueous ecosystem, toxicity and non-biodegradability [1].in the aim of removing heavy metals from aqueous solutions, an eco-friendly biosorbent was prepared from lagoon sludge by a humification process. The biosorption of Cd2+ and Al3+ ions from aqueous solutions was investigated as a function of initial pH,contact time, initial metal ions concentration, and temperature. Langmuir and Freundlich models were used to determine the sorption isotherm. Optimum pH for the removal of cadmium and aluminum was found respectively to be around 6 and 4 [2] . The equilibrium was obtained in 60 min with the pseudo-second-order kinetic model. The Langmuir model was a better fit with the experimental data for both cadmium and aluminum adsorption with a regression coefficient up to 0.99 and Qmax of 100 and 142 mg.g-1 respectively for Cd2+and Al3+.


2017 ◽  
Vol 8 (2) ◽  
pp. 214-224 ◽  
Author(s):  
M. Farnane ◽  
H. Tounsadi ◽  
A. Machrouhi ◽  
A. Elhalil ◽  
F. Z. Mahjoubi ◽  
...  

AbstractThe focus of this study is the investigation of removal ability of methylene blue (MB) and malachite green (MG) dyes from aqueous solution by raw maize corncob (RMC) and H3PO4 activated maize corncob (AMC). Maize corncobs were carbonized at 500 °C for 2 h, and then impregnated at a phosphoric acid to maize corncob ratio of 2.5 g/g. The impregnated maize corncob was activated in a tubular vertical furnace at 450 °C for 2 h. Samples were characterized by different methods. Adsorption experiments were carried out as a function of solution pH, adsorbent dosage, contact time, initial concentration of dyes and the temperature. Experimental results show that the activation of maize corncob boosts four times the adsorption performance for the selected dyes. The adsorption process is very rapid and was pH dependent with high adsorption capacities in the basic range. The kinetic data were fitted with the pseudo-second-order kinetic model. The best fit of equilibrium data was obtained by the Langmuir model with maximum monolayer adsorption capacities of 75.27 and 271.19 mg/g for MB, 76.42 and 313.63 mg/g for MG, respectively, in the case of RMC and AMC. The temperature did not have much influence on the adsorption performance.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4318
Author(s):  
Elie Meez ◽  
Abbas Rahdar ◽  
George Z. Kyzas

The threat of the accumulation of heavy metals in wastewater is increasing, due to their abilities to inflict damage to human health, especially in the past decade. The world’s environmental agencies are trying to issue several regulations that allow the management and control of random disposals of heavy metals. Scientific studies have heavily focused on finding suitable materials and techniques for the purification of wastewaters, but most solutions have been rejected due to cost-related issues. Several potential materials for this objective have been found and have been compared to determine the most suitable material for the purification process. Sawdust, among all the materials investigated, shows high potential and very promising results. Sawdust has been shown to have a good structure suitable for water purification processes. Parameters affecting the adsorption mechanism of heavy metals into sawdust have been studied and it has been shown that pH, contact time and several other parameters could play a major role in improving the adsorption process. The adsorption was found to follow the Langmuir or Freundlich isotherm and a pseudo second-order kinetic model, meaning that the type of adsorption was a chemisorption. Sawdust has major advantages to be considered and is one of the most promising materials to solve the wastewater problem.


2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


2016 ◽  
Vol 14 (1) ◽  
pp. 175-187 ◽  
Author(s):  
Lăcrămioara (Negrilă) Nemeş ◽  
Laura Bulgariu

AbstractMustard waste biomass was tested as a biosorbent for the removal of Pb(II), Zn(II) and Cd(II) from aqueous solution. This strategy may be a sustainable option for the utilization of such wastes. The influence of the most important operating parameters of the biosorption process was analyzed in batch experiments, and optimal conditions were found to include initial solution pH 5.5, 5.0 g biosorbent/L, 2 hours of contact time and high temperature. Kinetics analyses show that the maximum of biosorption was quickly reached and could be described by a pseudo-second order kinetic model. The equilibrium data were well fitted by the Langmuir model, and the highest values of maximum biosorption capacity were obtained with Pb(II), followed by Zn(II) and Cd(II). The thermodynamic parameters of the biosorption process (ΔG, ΔH and ΔS) were also evaluated from isotherms. The results of this study suggest that mustard waste biomass can be used for the removal of heavy metals from aqueous media.


2013 ◽  
Vol 726-731 ◽  
pp. 2100-2106 ◽  
Author(s):  
Hua Zhang ◽  
Xue Hong Zhang ◽  
Yi Nian Zhu ◽  
Shou Rui Yuan

Activated carbon prepared from grapefruit peel, an agricultural solid waste by-product, has been used for the adsorption of Cr(VI) from aqueous solution. The effects of adsorbent dosage, pH and temperature on adsorption of Cr(VI) were investigated. The maximum adsorption yield was obtained at the initial pH of 3. The dynamical data fit very well with the pseudo-second-order kinetic model and the calculated adsorption capacities (23.98, 24.33 and 24.81 mg/g) were in good agreement with experiment results at 20°C, 30°C and 40 °C for the 100 mg/L Cr(VI) solution. The Freundlich model (R2 values were 0.9198-0.9871) fitted adsorption data better than the Langmuir model. The calculated parameters confirmed the favorable adsorption of Cr(VI) on the activated carbon prepared from grapefruit peel.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


Sign in / Sign up

Export Citation Format

Share Document