scholarly journals An Abrasive Wear Model of Knife Milling to Predict the Impact of Material Properties and Milling Parameters on Knife Edge Recession

2021 ◽  
Author(s):  
George Fenske ◽  
Oyelayo Ajayi
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2391
Author(s):  
Cheng Tang ◽  
You-Chao Yang ◽  
Peng-Zhan Liu ◽  
Youn-Jea Kim

Since solid particles suspended in the fluid can cause wear in centrifugal pumps, intensive attention has been focused on the numerical prediction for the wear of flow parts in centrifugal pumps. However, most numerical studies have focused on only one wear model and a sphere particle model. The impact of particle shape on the wear of flow parts in centrifugal pumps is under-studied, particularly considering abrasive and impact wear simultaneously. In this work, the Computational Fluid Dynamics (CFD)-Discrete Element Method (DEM) coupling method with an abrasive and impact wear prediction model was adopted to study the wear characteristics of a centrifugal pump. Moreover, four regular polyhedron particles and a sphere particle with the same equivalent diameter but different sphericity were mainly analyzed. The results demonstrate that more particles move closer to the blade pressure side in the impeller passage, and particles tend to cluster in specific areas within the volute as sphericity increases. The volute suffers the principal wear erosion no matter what the shapes of particles and wear model are. Both the impact and abrasive wear within the impeller occur primarily on the blade leading edge. The pump’s overall impact wear rate decreases first and then increases with particle sphericity rising, while the pump’s overall abrasive wear rate grows steadily.


2020 ◽  
pp. 306-308
Author(s):  
V.S. Bochkov

The relevance of the search for solutions to increase the wear resistance of bucket teeth of excavating machine type front shovel is analyzed. The reasons for the wear of the teeth are considered. It is determined that when excavating machines work for rocks of VIII and IX categories, impact-abrasive wear of the inner side of the teeth and abrasive external wear occurs. It is proved that the cold-work hardening of Hadfield steel (the teeth material), which occurs during the excavating machine teeth work in the rocks of VIII and IX categories, reduces the impact-abrasive wear rate on the inner side of the teeth and does not affect the abrasive wear of the outer. The methods for thermomechanical treatment of the outer side of the excavating machine tooth is proposed. It can increase the wear resistance of Hadfield steel (110G13L) up to 1.7 times and lead to the self-sharpening effect of the tooth due to equalization of the wear rate of the outer and inner parts of the tooth. The efficiency factor of thermomechanical treatment to reduce the of abrasive wear rate of Hadfield steel is experimentally proved.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 735
Author(s):  
Songchen Wang ◽  
Xianchen Yang ◽  
Xinmei Li ◽  
Cheng Chai ◽  
Gen Wang ◽  
...  

The objective of this study was to investigate the wear characteristics of the U-shaped rings of power connection fittings, and to construct a wear failure prediction model of U-shaped rings in strong wind environments. First, the wear evolution and failure mechanism of U-shaped rings with different wear loads were studied by using a swinging wear tester. Then, based on the Archard wear model, the U-shaped ring wear was dynamically simulated in ABAQUS, via the Umeshmotion subroutine. The results indicated that the wear load has an important effect on the wear of the U-shaped ring. As the wear load increases, the surface hardness decreases, while plastic deformation layers increase. Furthermore, the wear mechanism transforms from adhesive wear, slight abrasive wear, and slight oxidation wear, to serious adhesive wear, abrasive wear, and oxidation wear with the increase of wear load. As plastic flow progresses, the dislocation density in ferrite increases, leading to dislocation plugs and cementite fractures. The simulation results of wear depth were in good agreement with the test value of, with an error of 1.56%.


2021 ◽  
Vol 46 ◽  
pp. 101468
Author(s):  
Periyasamy Kaliyappan ◽  
Andreas Paulus ◽  
Jan D’Haen ◽  
Pieter Samyn ◽  
Yannick Uytdenhouwen ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2784
Author(s):  
Georgios Maliaris ◽  
Christos Gakias ◽  
Michail Malikoutsakis ◽  
Georgios Savaidis

Shot peening is one of the most favored surface treatment processes mostly applied on large-scale engineering components to enhance their fatigue performance. Due to the stochastic nature and the mutual interactions of process parameters and the partially contradictory effects caused on the component’s surface (increase in residual stress, work-hardening, and increase in roughness), there is demand for capable and user-friendly simulation models to support the responsible engineers in developing optimal shot-peening processes. The present paper contains a user-friendly Finite Element Method-based 2D model covering all major process parameters. Its novelty and scientific breakthrough lie in its capability to consider various size distributions and elastoplastic material properties of the shots. Therewith, the model is capable to provide insight into the influence of every individual process parameter and their interactions. Despite certain restrictions arising from its 2D nature, the model can be accurately applied for qualitative or comparative studies and processes’ assessments to select the most promising one(s) for the further experimental investigations. The model is applied to a high-strength steel grade used for automotive leaf springs considering real shot size distributions. The results reveal that the increase in shot velocity and the impact angle increase the extent of the residual stresses but also the surface roughness. The usage of elastoplastic material properties for the shots has been proved crucial to obtain physically reasonable results regarding the component’s behavior.


2014 ◽  
Vol 611-612 ◽  
pp. 452-459 ◽  
Author(s):  
Giovenco Axel ◽  
Frédéric Valiorgue ◽  
Cédric Courbon ◽  
Joël Rech ◽  
Ugo Masciantonio

The present work is motivated by the will to improve Finite Element (FE) Modelling of cutting tool wear. As a first step, the characterisation of wear mechanisms and identification of a wear model appear to be fundamental. The key idea of this work consists in using a dedicated tribometer, able to simulate relevant tribological conditions encountered in cutting (pressure, velocity). The tribometer can be used to estimate the evolution of wear versus time for various tribological conditions (pressure, velocity, temperature). Based on this design of experiments, it becomes possible to identify analytically a wear model. As a preliminary study this paper will be focused on the impact of sliding speed at the contact interface between 304L stainless steel and tungsten carbide (WC) coated with titanium nitride (TiN) pin. This experiment enables to observe a modification of wear phenomena between sliding speeds of 60 m/min and 180 m/min. Finally, the impact on macroscopic parameters has been observed.


Author(s):  
Aaron D. Gupta

Abstract A dynamic elastic large displacement response analysis of the bottom floor of a generic vehicle hull model subjected to empirically obtained coupled blast and impact loads has been conducted using three-dimensional (3-D) shell elements in the ADINA nonlinear dynamic finite element analysis code. For the impulse-dominated problem, the impact load is a square wave step function concentrated load while the blast loads from the detonation of an explosive are a series of distributed pressure loads approximated as triangular impulse loads with linear decay and varying arrival and duration times. The 3-D numerical model has been generated using the PATRAN3 modeling code and converted to the ADINA finite element input data deck using the ADINA translator and careful inclusion of appropriate material properties as well as initial and boundary conditions. Monolithic single-layered four-noded quad shell elements were sufficient to model the bottom floor and the left- and right-horizontal and vertical sponsons as well as the lower front glacis. Although several simplifying assumptions and approximations are made during the generation of the basic floor model, material properties, and the forcing functions, the investigation gives valuable insight into the response behavior of a generic hull bottom floor to externally applied coupled blast and impact loads and provides an inexpensive nondestructive method of evaluation of the structural integrity of modern vehicles subjected to spatially varying transient loads.


Author(s):  
Akshay Mallikarjuna ◽  
Dan Marghitu ◽  
P.K. Raju

— In this study, an optimized method to simulate the dynamic 3D event of the impact of a rod with a flat surface has been presented. Unlike the 2D FEM based contact models, in this study both the bodies undergoing the impact are considered elastic(deformable) and simulation is the dynamic event of the impact, instead of predefined 2D symmetric contact analysis. Prominent contact models and plasticity models to define material properties in ANSYS are reviewed. Experimentation results of normal and oblique impact of the rod for different rods provided the coefficient of restitution. Experimental results of permanent deformation on the base for different impact velocity is derived out of a prominent impact study. The simulation results are in co-relation with experiment and both indentation and flattening models on the coefficient of restitution (COR) and permanent deformation of the base and rod after the impact. Thus, the presented 3D Explicit Dynamic simulation of impact is validated to analyze the impact behavior of the 2 bodies without any predefined assumptions with respect to boundary conditions or material properties.


Sign in / Sign up

Export Citation Format

Share Document